精英家教网 > 初中数学 > 题目详情

【题目】如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

【答案】
(1)解:线段AC是⊙O的切线;

理由如下:∵∠CAD=∠CDA(已知),∠BDO=∠CDA(对顶角相等),

∴∠BDO=∠CAD(等量代换);

又∵OA=OB(⊙O的半径),

∴∠B=∠OAB(等边对等角);

∵OB⊥OC(已知),

∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,

∴线段AC是⊙O的切线


(2)解:设AC=x(x>0).

∵∠CAD=∠CDA(已知),

∴DC=AC=x(等角对等边);

∵OA=5,OD=1,

∴OC=OD+DC=1+x;

∵由(1)知,AC是⊙O的切线,

∴在Rt△OAC中,根据勾股定理得,

OC2=AC2+OA2,即

(1+x)2=x2+52

解得x=12,即AC=12.


【解析】(1)根据已知条件“∠CAD=∠CDA”、对顶角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根据等腰三角形OAB的两个底角相等、直角三角形的两个锐角互余的性质推知∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°.所以线段AC是⊙O的切线;(2)根据“等角对等边”可以推知AC=DC,所以由图形知OC=OD+CD;然后利用(1)中切线的性质可以在Rt△OAC中,根据勾股定理来求AC的长度.
【考点精析】关于本题考查的勾股定理的概念和切线的判定定理,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在方格纸中,已知格点ABC和格点O

(1)画出ABC关于点O对称的ABC′;

(2)若以点AOCD为顶点的四边形是平行四边形,则点D的坐标为__.(写出所有可能的结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是直线AB上的一点,OC为任一射线,OD平分∠BOC,OE平分∠AOC.

(1)指出图中∠AOD的补角和∠BOE的补角;

(2)若∠BOC=68°,求∠COD和∠EOC的度数;

(3)COD与∠EOC具有怎样的数量关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为 cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是cm.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;
(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以RtABC的斜边BC为一边作正方形BCDE设正方形的中心为O,连结AO,如果AB=3,AO,那么AC的长等于__________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一只甲虫在55的方格(每一格边长为1)上沿着网格线运动,A处出发去看望B、C、D处的甲虫,规定:向上向右为正,向下向左为负.例如:从AB记为:(+1,+3);从CD 记为:(+1,-2),其中第一个数表示左右方向,第二个数表示上下方向.

(1)填空:记为 ), 记为 );

(2)若甲虫的行走路线为:,请你计算甲虫走过的路程.

(3)若这只甲虫去Q的行走路线依次为:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),请依次在图2标出点M、N、P、Q的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有理数ab在数轴上的对应点如图所示.

(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;

(2)已知有理数ab,计算|a+b|–|a|–|1–b|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.
(1)请你帮他们求出该湖的半径;
(2)如果在圆周上再另取一点P,建造一座连接B,C,P三点的三角形艺术桥,且△BCP为直角三角形,问:这样的P点可以有几处?如何找到?

查看答案和解析>>

同步练习册答案