精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y=- x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

【答案】(1) y=﹣;(2) x<﹣4 0x4;(3) y=-.

【解析】

(1)直线l1:y= - x经过点A,且A点的纵坐标是2,可得A(-4,2),代入反比例函数解析式可得k的值;(2)根据图象得到点B的坐标,进而直接得到﹣ x> 的解集即可;(3)设平移后的直线 x 轴交于点 D,连接 AD,BD,由平行线的性质可得出SABC=SABF,即可得出关于OD的一元一次方程,解方程即可得出结论.

(1)∵直线 l1:y=﹣x 经过点 A,A 点的纵坐标是 2,

∴当 y=2 时,x=﹣4,

A(﹣4,2),

∵反比例函数 y=的图象经过点 A,

k=﹣4×2=﹣8,

∴反比例函数的表达式为 y=﹣

(2)∵直线 l1:y=﹣x 与反比例函数 y=的图象交于 A,B 两点,

B(4,﹣2),

∴不等式﹣ x> 的解集为 x<﹣4 0<x<4;

(3)如图,设平移后的直线 x 轴交于点 D,连接 AD,BD,

CDAB,

∴△ABC 的面积与ABD 的面积相等,

∵△ABC 的面积为 30,

SAOD+SBOD=30,即 OD(|yA|+|yB|)=30,

×OD×4=30,

OD=15,

D(15,0),

设平移后的直线 的函数表达式为 y=﹣x+b, D(15,0)代入,可得 0=﹣×15+b,

解得 b=

∴平移后的直线 的函数表达式为 y=-.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图直线y=x﹣1与坐标轴交于AB两点P是曲线y=x>0)上一点PAB是以APB=90°的等腰三角形k= _________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们生活水平的不断提高旅游已成为人们的一种生活时尚 开发新的旅游项目我市对某山区进行调查发现一瀑布为测量它的高度 量人员在瀑布的对面山上 D 点处测得瀑布顶端 A 点的仰角是 30°,测得瀑布底端 B 点的俯角是 10°,AB 与水平面垂直.又在瀑布下的水平面测得 CG=27m, GF=17.6m(注:C、G、F 三点在同一直线上,CFAB 于点 F).斜坡 CD=20m, 坡角∠ECD=40°.求瀑布 AB 的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3,0)和点C(0,3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.

(1)求直线BC及该抛物线的表达式;

(2)设该抛物线的顶点为D,求△DBC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点 P(x,y)在第一象限,且 x+y=12,点 A(10,0)在 x 轴上,当△OPA 为直角三角形时,点 P 的坐标为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某反比例函数图象的一支经过点A23)和点B(点B在点A的右侧),作BCy轴,垂足为点C,连结ABAC

1)求该反比例函数的解析式;

2)若ABC的面积为6,求直线AB的表达式.

查看答案和解析>>

同步练习册答案