20£®ÒÑÖªµãP£¨2£¬3£©ÊÇ·´±ÈÀýº¯Êý$y=\frac{k}{x}$µÄͼÏóÉϵĵ㣮¹ýµãP×÷Ò»ÌõÖ±Ïߺ͸ÃͼÏóÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇÒºÍx£¬yÖá·Ö±ð½»ÓÚA£¬BÁ½µã£®
£¨1£©Çó¸ÃÖ±ÏߵĽâÎöʽ£»
£¨2£©QÊÇ·´±ÈÀýº¯ÊýÔÚµÚÈýÏóÏÞͼÏóÉϵ͝µã£¬¹ýµãQ×÷Ö±ÏßÓë·´±ÈÀýº¯ÊýµÄͼÏóÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇÒºÍx£¬yÖá·Ö±ð½»ÓÚC£¬DÁ½µã£¬ÅжÏÖ±ÏßAD£¬BCµÄλÖùØÏµ£¬²¢¼ÓÒÔÖ¤Ã÷£®
£¨3£©ÅжÏËıßÐÎABCDÃæ»ý×îСʱµÄÐÎ×´£¬²¢¼ÓÒÔÖ¤Ã÷£®

·ÖÎö £¨1£©°ÑPµÄ×ø±ê´úÈë¼´¿ÉÇó³ö·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬ÉèÖ±Ïß½âÎöʽΪy=ax+b£¬°ÑP£¨2£¬3£©´úÈëµÃ³öy=kx+3-2k£¬ÁªÁ¢Ö±ÏßÓë·´±ÈÀý½âÎöʽµÃ³ö·½³Ìkx2+£¨3-2k£©x-6=0£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹ØÏµÇó³ök£¬¼´¿ÉÇó³öÖ±ÏߵĽâÎöʽ£»
£¨2£©ÓÉ£¨1£©Çó³öµÄÖ±Ïßy=-$\frac{3}{2}$x+6£¬Çó³öAºÍBµÄ×ø±ê£¬µÃ³öOA=4£¬OB=6£¬ÉèÖ±ÏßCDµÄ½âÎöʽΪy=mx+n£¬¿ÉµÃ$\left\{\begin{array}{l}{y=mx+n}\\{y=\frac{6}{x}}\end{array}\right.$Ö»ÓÐÒ»¸ö½â£¬¼Ì¶øÖ¤µÃ$\frac{OA}{OC}=\frac{OD}{OB}$£¬Ôò¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©ÉèOC=t£¬ÔòOD=$\frac{24}{t}$£¬¸ù¾ÝSËıßÐÎABCD=S¡÷BCD+S¡÷BDAµÃ³öS=3t+$\frac{48}{t}$+24£¬»¯³É¶¥µãʽ¼´¿ÉÇó³öt£¬¸ù¾ÝÁâÐεÄÅж¨ÍƳö¼´¿É£®

½â´ð £¨1£©½â£º½«PµÄ×ø±ê´úÈë·´±ÈÀý½âÎöʽµÃ£º3=$\frac{k}{2}$£¬¼´k=6£¬
Ôò·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{6}{x}$£¬
ÉèÖ±Ïß½âÎöʽΪy=ax+b£¬
¡ß°ÑP£¨2£¬3£©´úÈëµÃ£º3=2k+b£¬
¼´b=3-2k£¬
¡ày=kx+3-2k£¬
ÁªÁ¢Ö±ÏßÓë·´±ÈÀý½âÎöʽµÃ£º
$\left\{\begin{array}{l}{y=kx+3-2k}\\{y=\frac{6}{x}}\end{array}\right.$£¬
ÏûÈ¥yÕûÀíµÃ£ºkx2+£¨3-2k£©x-6=0£¬
ÓÉÌâÒâµÃµ½·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬µÃµ½¡÷=£¨3-2k£©2+24k=9-12k+4k2+24k=9+12k+4k2=£¨2k+3£©2=0£¬
½âµÃ£ºk=-$\frac{3}{2}$£¬
¡àÖ±ÏßΪ£ºy=-$\frac{3}{2}$x+6£»

£¨2£©AD¡ÎBC£®ÀíÓÉ£ºÖ¤Ã÷£ºÓÉ£¨1£©Çó³öµÄÖ±Ïßy=-$\frac{3}{2}$x+6£¬Áîx=0£¬µÃµ½y=6£»Áîy=0£¬µÃµ½x=4£¬
ÔòA£¨4£¬0£©£¬B£¨0£¬6£©£¬¼´OA=4£¬OB=6£¬
ÉèÖ±ÏßCDµÄ½âÎöʽΪy=mx+n£¬
Ôò$\left\{\begin{array}{l}{y=mx+n}\\{y=\frac{6}{x}}\end{array}\right.$Ö»ÓÐÒ»¸ö½â£¬
ÏûÈ¥yÕûÀíµÃ£ºmx2+nx-6=0£¬
¡÷=n2+24m=0£¬
-$\frac{{n}^{2}}{m}$=24£¬
OC•OD=$\frac{n}{m}$•£¨-n£©=24=OA•OB£¬¼´$\frac{OA}{OC}=\frac{OD}{OB}$£¬
¡àAD¡ÎBC£»

£¨3£©ËıßÐÎABCDΪÁâÐΣ®ÀíÓÉ£ºÖ¤Ã÷£ºÉèOC=t£¬ÔòOD=$\frac{24}{t}$£¬
SËıßÐÎABCD=S¡÷BCD+S¡÷BDA=$\frac{1}{2}$¡Á£¨6+$\frac{24}{t}$£©¡Át+$\frac{1}{2}$¡Á£¨6+$\frac{24}{t}$£©¡Á4
=3t+$\frac{48}{t}$+24
=3£¨$\sqrt{t}$-$\frac{4}{\sqrt{t}}$£©2+48£¬
Ôòµ±$\sqrt{t}$-$\frac{4}{\sqrt{t}}$=0£¬¼´t=4ʱ£¬ËıßÐÎABCDÃæ»ý×îС£¬
´ËʱOA=OC=4£¬OB=OD=6£¬
ÓÖ¡ßAC¡ÍBD£¬
¡àËıßÐÎABCDΪÁâÐΣ®

µãÆÀ ´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌ⣮¿¼²éÁË·´±ÈÀýº¯ÊýµÄÐÔÖÊ¡¢ÁâÐεÄÅж¨¡¢Æ½ÐÐÏßµÄÅж¨ÒÔ¼°×îÖµÎÊÌ⣮עÒâÀûÓÃÒ»Ôª¶þ´Î·½³Ì¸ùµÄÇé¿öÀ´Åж¨½»µãÎÊÌâµÄÊǽâ´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺4+£¨-1.2£©-£¨-1.7£©-|-$\frac{1}{2}$|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª$|{a-5}|+\sqrt{a+2b+5}=0$£¬Çó3a+b+1µÄÖµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®aµÄƽ·½¸ùΪ$\left\{\begin{array}{l}{¡Àa£¨a£¾0£©}\\{0£¨a=0£©}\\{ûÓÐÆ½·½¸ù£¨a£¼0£©}\end{array}\right.$£®£®$\root{3}{-64}$=-4£» $\sqrt{49}$µÄƽ·½¸ùÊÇ¡À$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¹ØÓÚxµÄ·½³Ì$\frac{2}{x-1}=\frac{ax-1}{x£¨x-1£©}$-2ÓÐÔö¸ù£¬Ôòa=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÖ±Ïßl·Ö±ðÓëxÖá¡¢yÖá½»ÓÚA£®BÁ½µã£¬ÓëË«ÇúÏßy=$\frac{a}{x}$£¨a¡Ù0£¬x£¾0£©·Ö±ð½»ÓÚD£®EÁ½µã£®ÈôµãDµÄ×ø±êΪ£¨3£¬1£©£¬µãEµÄ×ø±êΪ£¨1£¬n£©
£¨1£©·Ö±ðÇó³öÖ±ÏßlÓëË«ÇúÏߵĽâÎöʽ£»
£¨2£©Çó¡÷EODµÄÃæ»ý£»
£¨3£©Èô½«Ö±ÏßlÏòÏÂÆ½ÒÆm£¨m£¾0£©¸öµ¥Î»£¬µ±mΪºÎֵʱ£¬Ö±ÏßlÓëË«ÇúÏßÓÐÇÒÖ»ÓÐÒ»¸ö½»µã£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Í¬Ñ§ÃÇÖªµÀ£¬Íêȫƽ·½¹«Ê½ÊÇ£º£¨a+b£©2=a2+b2+2ab£¬£¨a-b£©2=a2-2ab+b2£¬Óɴ˹«Ê½ÎÒÃÇ¿ÉÒԵóöÏÂÁнáÂÛ£º
ab=$\frac{1}{2}$[£¨a+b£©2-£¨a2+b2£©]£¨1£©
£¨a-b£©2=£¨a+b£©2-4ab   £¨2£©
ÀûÓù«Ê½£¨1£©ºÍ£¨2£©½â¾öÏÂÁÐÎÊÌ⣺
ÒÑÖªmÂú×㣨3m-2015£©2+£¨2014-3m£©2=5
£¨1£©Çó£¨2015-3m£©£¨2014-3m£©µÄÖµ£»
£¨2£©Çó£¨6m-4029£©2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬CD¡ÍAB£¬BE¡ÍAC£¬´¹×ã·Ö±ðΪD¡¢E£¬BE¡¢CD½»ÓÚµãO£¬OB=OC£®ÇóÖ¤£º¡Ï1=¡Ï2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆËãÄÜÁ¦²âÊÔ£º
£¨1£©$\frac{\sqrt{27}-\sqrt{12}}{\sqrt{3}}$+£¨2-$\sqrt{5}$£©£¨2+$\sqrt{5}$£©£»
£¨2£©£¨$\sqrt{6}$-2$\sqrt{15}$£©¡Á$\sqrt{3}$-6$\sqrt{\frac{1}{2}}$¡Â£¨$\sqrt{5}$+3£©2
£¨3£©|-$\sqrt{2}$|-$\sqrt{8}$+£¨1-$\sqrt{3}$£©0+$\frac{1}{\sqrt{2}+\sqrt{3}}$
£¨4£©½â·½³Ì£º9£¨x-2£©2=25£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸