【题目】如图,已知平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,与直线y=x交于点C.
(1)求A,B,C三点的坐标;
(2)求△AOC的面积;
(3)已知点P是x轴正半轴上的一点,若△COP是等腰三角形,直接写点P的坐标.
【答案】(1)A(-4,0);B(0,2);C(4,4);(2)8;(3)P点坐标为P1(8,0),P2(4,0),P3(4,0).
【解析】
(1)先令y=0,求出x的值可得出A点坐标;再令x=0,求出y的值即可得出B点坐标;联立两直线的解析式求出x、y的对应值即可得出C点坐标;
(2)根据A、C两点的坐标,利用三角形的面积公式即可得出结论;
(3)分OC=PC,OC=OP,PC=OP三种情况进行讨论.
(1)∵令y=0,则x=-4,
∴A(-4,0);
∵令x=0,则y=2,
∴B(0,2);
∵,解得,
∴C(4,4);
(2)∵A(-4,0),C(4,4)
∴S△AOC=OAyC=×4×4=8;
(3)如图,当OC=PC时,
∵C(4,4),
∴P1(8,0);
当OC=OP时,
∵C(4,4),
∴OC=
∴P2(4,0);
当PC=OP时,设P(x,0),
则x=,解得x=4,
∴P3(4,0).
综上所述,P点坐标为P1(8,0),P2(4,0),P3(4,0).
科目:初中数学 来源: 题型:
【题目】商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是 ;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,O为坐标原点,A(-5,8),B(3,0).
(1)如图1,求∠ABO的度数;
(2)如图2,点C在y轴的负半轴上,△BOC的面积为,过点C作CD∥AB交x轴于点D,点P为直线CD上一点,求△PAB的面积;
(3)如图3,在(2)的条件下,当P在第二象限时,过点P作AB的垂线交x轴于点E,点F为x轴上一点,连接PF,点G为EP延长线上一点,连接OG,若OG=FP,∠EFP+∠PGO=45°,EF=11,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+x+2交x轴于点A.B(A在B的右侧),与y轴交于点C,D为第一象限抛物线上的动点,则△ACD面积的最大值是_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图
(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,抛物线()与轴交于,两点,点在该抛物线上(点与,两点不重合),如果的三边满足,则称点为抛物线()的勾股点.
(1)求证:点是抛物线的勾股点.
(2)如图2,已知抛物线()与轴交于,两点,点是抛物线的勾股点,求抛物线的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:
当a>0,b>0时:
∵()2=a﹣2+b≥0
∴a+b≥2,当且仅当a=b时取等号.
请利用上述结论解决以下问题:
(1)请直接写出答案:当x>0时,x+的最小值为 .当x<0时,x+的最大值为 ;
(2)若y=,(x>﹣1),求y的最小值;
(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com