【题目】已知二次函数与轴交于、(在的左侧)与轴交于点,连接、.
(1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、、,求的周长最小值;
(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧). 将绕点顺时针旋转至. 抛物线的对称轴上有—动点,坐标系内是否存在一点,使得以、、、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,理由见解析;,,,,
【解析】
(1)利用待定系数法求出A,B,C的坐标,如图1中,作PQ∥y轴交BC于Q,设P,则Q,构建二次函数确定点P的坐标,作P关于y轴的对称点P1(-4,6),作P关于x轴的对称点P2(4,-6),的周长最小,其周长等于线段的长,由此即可解决问题.
(2)首先求出平移后的抛物线的解析式,确定点H,点C′的坐标,分三种情形,当OC′=C′S时,可得菱形OC′S1K1,菱形OC′S2K2.当OC′=OS时,可得菱形OC′K3S3,菱形OC′K4S4.当OC′是菱形的对角线时,分别求解即可解决问题.
解:(1)如图,,
过点作轴平行线,交线段于点,
设,
=-(m2-4)2+4,
∵,
∴m=4时,△PBC的面积最大,此时P(4,6)
作点关于轴的对称点,点关于轴的对称点,连接交轴、轴分别为,
此时的周长最小,其周长等于线段的长;
∵,
∴.
(2)如图,
∵E(0,-4),平移后的抛物线经过E,B,
∴抛物线的解析式为y=-x2+bx-4,把B(8,0)代入得到b=4,
∴平移后的抛物线的解析式为y=-x+4x-4=-(x-2)(x-8),
令y=0,得到x=2或8,
∴H(2,0),
∵△CHB绕点H顺时针旋转90°至△C′HB′,
∴C′(6,2),
当OC′=C′S时,可得菱形OC′S1K1,菱形OC′S2K2,
∵OC′=C′S==2,
∴可得S1(5,2-),S2(5,2+),
∵点C′向左平移一个单位,向下平移得到S1,
∴点O向左平移一个单位,向下平移个单位得到K1,
∴K1(-1,-),同法可得K2(-1,),
当OC′=OS时,可得菱形OC′K3S3,菱形OC′K4S4,
同法可得K3(11,2-),K4(11,2+),
当OC′是菱形的对角线时,设S5(5,m),则有52+m2=12+(2-m)2,
解得m=-5,
∴S5(5,-5),
∵点O向右平移5个单位,向下平移5个单位得到S5,
∴C′向上平移5个单位,向左平移5个单位得到K5,
∴K5(1,7),
综上所述,满足条件的点K的坐标为(-1,-)或(-1,)或(11,2-)或(11,2+)或(1,7).
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD的边长为4,点E, F分别在BC, BD上,且BE=1,过三点C, E, F作⊙O交CD于点G.
(1)证明∠EFG =90°.
(2)如图2,连结AF,当点F运动至点A,F, G三点共线时,求的面积.
(3)在点F整个运动过程中,
①当EF, FG, CG中满足某两条线段相等,求所有满足条件的BF的长.
②连接EG,若时,求⊙O的半径(请直接写出答案) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.
(1)小球飞行时间是多少时,小球最高?最大高度是多少?
(2)小球飞行时间t在什么范围时,飞行高度不低于15m?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD:OC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).
(1)试确定此二次函数的解析式;
(2)请你判断点P(-2,3)是否在这个二次函数的图象上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识
的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,
并将检查结果绘制成下面两个统计图.
(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人.
(2)“非常了解”的4 人有两名男生, 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正六边形A1B1C1D1E1F1的边长为1,它的6条对角线围成一个正六边形A2B2C2D2E2F2;正六边形A2B2C2D2E2F2的6条对角线又围成一个正六边形A3B3C3D3E3F3…;如此继续下去,则六边形A4B4C4D4E4F4的面积是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com