【题目】如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D。
(1)当点M在AB上运动时,四边形OCMD的周长为________;
(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a (0<a≤4),在平移过程中:
①当平移距离a=1时, 正方形OCMD与△AOB重叠部分的面积为________;
②当平移距离a是多少时,正方形OCMD的面积被直线AB分成l:3两个部分?
【答案】(1)8;(2)①3.5;②a=或
【解析】试题分析:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,x>0,-x+4>0)根据四边形的周长计算方法计算即可发现,当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8.
(2)①当0<a≤2时,S=4-a2=-a2+4,并且a=1可求出重叠部分的面积;
②当四边形为OCMD为正方形时,先求得正方形的边长,从而可求得正方形的面积,可求得正方形被直线分成的较小的部分的面积为1,然后再证明“较小的部分”为等腰直角三角形,从而可求得该等腰直角三角形的直角边的长度,于是可求得平移的距离.
试题解析:(1)(1)设OC=x,则CM=4-x.
∵MC⊥OA,MD⊥OB,OD⊥OC,
∴四边形OCMD为矩形,
∴四边形OCMD的周长=OD+OC+CM+DM=2(CO+CM)=2(x+4-x)=2×4=8.
(2)①如图( 2 ),当0<a≤2时,S=S四边形O′CMD-S△MEF=4-a2=-a2+4,
②∵当四边形为OCMD为正方形时,OC=CM,即x=4-x,解得:x=2,
∴S正方形OCMD的面积=4.
∵正方形OCMD的面积被直线AB分成1:3两个部分,
∴两部分的面积分别为1和3.
当0<a≤2时,如图1所示:
∵直线AB的解析式为y=4-x,
∴∠BAO=45°.
∴△MM′E为等腰直角三角形.
∴MM′=M′E.
∴MM′2=1.
∴MM′=,即a=
当2<a<4时,如图2所示:
∵∠BAO=45°,
∴△EO′A为等腰直角三角形.
∴EO′=O′A.
∴O′A2=1,解得:O′A=.
∵将y=0代入y=4-x得;4-x=0,解得:x=4,
∴OA=4.
∴OO′=4-,即a=4-.
综上所述,当平移的距离为a=或a=4时,正方形OCMD的面积被直线AB分成1:3两个部分.
科目:初中数学 来源: 题型:
【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.
(1)问几秒后,点P和点Q的距离是10cm?
(2)问几秒后,以P、Q、D三点为顶点的三角形为直角三角形?
(提示:根据不同情况画出不同的图形,再给予解决问题.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB=8(点A在点B的左侧)
(1)若在直线AB上取一点C,使得AC=3CB,点D是CB的中点,求AD的长;
(2)若M是线段AB的中点,点P是线段AB延长线上任意一点,请说明PA+PB﹣2PM是一个定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一套三角尺(分别含,,和,,的角)按如图所示摆放在量角器上,边与量角器刻度线重合,边与量角器刻度线重合,将三角尺绕量角器中心点以每秒的速度顺时针旋转,当边与刻度线重合时停止运动,设三角尺的运动时间为.
(1)当时,边经过的量角器刻度线对应的度数是 度;
(2)若在三角尺开始旋转的同时,三角尺也绕点以每秒的速度逆时针旋转,当三角尺停止旋转时,三角尺也停止旋转.
①当为何值时,边平分;
②在旋转过程中,是否存在某一时刻使,若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(—3,—3),B(—2,—1),C(—1,—2)是直角坐标平面上三点。
(1)请画出ΔABC关于原点O对称的ΔA1B1C1,
(2)请写出点B关天y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在ΔA1B1C1内部,指出h的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1+∠2=180°,∠DAE=∠BCF.
(1)试判断直线AE与CF有怎样的位置关系?并说明理由;
(2)若∠BCF=70°,求∠ADF的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com