【题目】如图,已知是的直径,过点作,交弦于点,交于点,且使.
(1)求证:是的切线;
(2)若,,求的长.
【答案】(1)详见解析;(2)PE= 4﹣2 .
【解析】
(1)连接OC,由在计算的圆周角为直角可得∠ACB=90°,根据等腰三角形的性质及已知条件易得∠BCO=∠ACP,由此可得∠OCP=90°,即可证得PC是⊙O的切线;(2)在Rt△OCP中,求得OC=2 ,OP=4,由此即可求得PE的长.
(1)证明:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BCO+∠ACO=90°,
∵OC=OB,
∴∠B=∠BCO,
∵∠PCA=∠ABC,
∴∠BCO=∠ACP,
∴∠ACP+∠OCA=90°,
∴∠OCP=90°,
∴PC是⊙O的切线;
(2)解:∵∠P=60°,PC=2,∠PCO=90°,
∴OC=2 ,OP=2PC=4,
∴PE=OP﹣OE=OP﹣OC=4﹣2 .
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系x0y中,直线与y轴交于点A,与x轴交于点B,抛物线:过A、B两点,与x轴的另一交点为点C.
(1)求抛物线的解析式及点C的坐标;
(2)如图2,作抛物线,使得抛物线与恰好关于原点对称,与在第一象限内交于点D,连接AD,CD.
①请直接写出抛物线的解析式和点D的坐标;
②求四边形AOCD的面积;
(3)已知抛物线,的顶点为M,设P为抛物线对称轴上一点,Q为直线上一点,是否存在以点M,Q,P,B为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(k+1)x+k2+1=0
(1) 当k取何值方程有两个实数根
(2) 是否存在k值使方程的两根为一个矩形的两邻边长,且矩形的对角线长为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小南利用几何画板画图,探索结论,他先画∠MAN=90°,在射线AM上取一点B,在射线AN上取一点C,连接BC,再作点A关于直线BC的对称点D,连接AD、BD,得到如图所示图形,移动点C,小南发现:当AD=BC时,∠ABD=90°;请你继续探索;当2AD=BC时,∠ABD的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某村2016年的人均收入为20000元,2018年的人均收入为24200元
(1)求2016年到2018年该村人均收入的年平均增长率;
(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h) 与A地的距离 | 0.5 | 1.8 | _____ |
甲与A地的距离(km) | 5 |
| 20 |
乙与A地的距离(km) | 0 | 12 |
|
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中秋节期间,大润发超市将购进一批月饼进行销售,已知购进4盒甲品牌月饼和6盒乙品牌月饼需260元,购进5盒甲品牌月饼和4盒乙品牌月饼需220元.甲乙两种品牌月饼以相同的售价销售,甲品牌月饼的销量(盒)与售价(元)之间的关系为;当售价为40元时,乙品牌月饼可销售100盒,售价每提高1元,少销售5盒.
(1)求甲乙两种品牌月饼每盒的进价分别为多少元?
(2)当乙品牌月饼的售价为多少元时,乙品牌月饼的销售总利润最大?此时甲乙两种品牌月饼的销售总利润为多少?
(3)当甲品牌月饼的销售量不低乙品牌月饼的销售量的,若使两种品牌月饼的总利润最高,求此时的定价为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com