精英家教网 > 初中数学 > 题目详情

【题目】中秋节期间,大润发超市将购进一批月饼进行销售,已知购进4盒甲品牌月饼和6盒乙品牌月饼需260,购进5盒甲品牌月饼和4盒乙品牌月饼需220.甲乙两种品牌月饼以相同的售价销售,甲品牌月饼的销量(盒)与售价(元)之间的关系为;当售价为40元时,乙品牌月饼可销售100盒,售价每提高1元,少销售5.

(1)求甲乙两种品牌月饼每盒的进价分别为多少元?

(2)当乙品牌月饼的售价为多少元时,乙品牌月饼的销售总利润最大?此时甲乙两种品牌月饼的销售总利润为多少?

(3)当甲品牌月饼的销售量不低乙品牌月饼的销售量的,若使两种品牌月饼的总利润最高,求此时的定价为多少?

【答案】(1)甲品牌进价为20元,乙品牌进价为30;(2)两种品牌销售总利润为2125;(3)x=36时,取得最大值.

【解析】

1)根据题意列出方程求出甲品牌和乙品牌的进价.

2)由题意得W ,将其进行化简为开口向下的顶点式即可求出乙的售价再求出总利润.

3)根据不等式400-8x≥300-5xW进行求解,得到此时的定价.

1)解:设甲品牌进价为a元,乙品牌进价为b元,

由题意可得

解得

2)由题意得

当售价为45元时,乙品牌月饼销售总利润最高,为1125

当售价为45元时,甲品牌月饼销售利润为

两种品牌销售总利润为2125

3)由不等式400-8x≥300-5x,得x≤36

由题意得对称轴为505/13

故在x=36时,取得最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,过点作,交弦于点,交于点,且使.

1)求证:的切线;

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点EFGH是矩形ABCD各边的中点,AB2.4BC3.4.动点M从点A出发,沿ABCDA匀速运动,到点A停止,设点M运动的路程为x,点M到四边形EFGH的某一个顶点的距离为y,如果表示y关于x的函数关系的图象如图2所示,那么四边形EFGH的这个顶点是(  )

A. EB. FC. GD. H

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD的边ABx轴上,点B坐标(﹣3,0),点Cy轴正半轴上,且sinCBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.

(1)求点D坐标.

(2)求S关于t的函数关系式.

(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2的菱形ABCD,BD=2,E、F分别是AD,CD上的动点(包含端点),且AE+CF=2,则线段EF长的最小值是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】工厂对某种新型材料进行加工,首先要将其加温,使这种材料保持在一定温度范围内方可加工,如图是在这种材料的加工过程中,该材料的温度y)时间xmin)变化的数图象,已知该材料,初始温度为15℃,在温度上升阶段,yx成一次函数关系,在第5分钟温度达到60℃后停止加温,在温度下降阶段,yx成反比例关系.

1)写出该材料温度上升和下降阶段,yx的函数关系式:

①上升阶段:当0≤x≤5时,y   

②下降阶段:当x5时,y   

2)根据工艺要求,当材料的温度不低于30℃,可以进行产品加工,请问在图中所示的温度变化过程中,可以进行加工多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正确结论的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把a、b两个数中较小的数记作min{a,b},直线y=kx﹣k﹣2(k0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、Ex轴上,CFy轴于点B(0,2),且矩形其面积为8,此抛物线的解析式.

查看答案和解析>>

同步练习册答案