精英家教网 > 初中数学 > 题目详情

【题目】如图是放在地面上的一个长方体盒子,其中,在线段的三等分点E=3)处有一只蚂蚁,中点处有一米粒,则蚂蚁沿长方体表面爬到米粒处的最短距离为( )

A.10

B.

C.5+

D.6+

【答案】A

【解析】

利用平面展开图有两种情况,画出图形利用勾股定理求出EF的长即可.

如图1

AB=9,BB′=5,B′C′=6,在线段AB的三等分点E(靠近点A)处有一只蚂蚁,B′C′中点F处有一米粒,

BE=6BF=5+3=8

EF= =10

如图2,AB=9,BB′=5,B′C′=6,在线段AB的三等分点E(靠近点A)处有一只蚂蚁,

B′C′中点F处有一米粒,

BE=6EN=9FN=5

EF= .

10<

∴蚂蚁沿长方体表面爬到米粒处的最短距离为10.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,四边形OABC的顶点Ax轴的正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO的中点,连结DE、EF、FG、GD.

(1)若点Cy轴的正半轴上,当点B的坐标为(2,4)时,判断四边形DEFG的形状,并说明理由.

(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度的取值范围.

(3)若在点C的运动过程中四边形DEFG始终为正方形,当点CX轴负半轴经过Y轴正半轴,运动至X轴正半轴时,直接写出点B的运动路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鸡兔同笼问题是我国古代著名趣题之一,大约在 1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有 35 个头;从下面数,有 94 只脚 .求笼中各有几只鸡和兔?经计算可得( )

A. 20 只,兔 15 B. 12 只,兔 23

C. 15 只,兔 20 D. 23 只,兔 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式,次数是b3ab互为相反数,在数轴上,点A表示数a,点B表示数b

数轴上AB之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.

有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.

若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB和线段MN都在数轴上,点AMNB对应的数字分别为﹣10211.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.

1)用含有t的代数式表示AM的长为  

2)当t=  秒时,AM+BN=11

3)若点AB与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AMBN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.

(1)若∠AOC=76°,求∠BOF的度数;

(2)若∠BOF=36°,求∠AOC的度数;

(3)若|∠AOC﹣BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DEAC,垂足为E,交AB的延长线于点F.

(1)求证:EF是⊙O的切线;

(2)若∠C=60°,AC=12,求的长.

(3)若tanC=2,AE=8,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)如图,AB⊙O的直径,直线CD⊙O于点DAM⊥CD于点MBN⊥CDN

1)求证:∠ADC=∠ABD

2)求证:AD2=AMAB

3)若AM=sinABD=,求线段BN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线(k≠0)与△ABC有交点,则k的取值范围是( )

A. 1≤k≤4 B. 1≤k<4 C. 1<k<2 D. 1≤k≤3

查看答案和解析>>

同步练习册答案