精英家教网 > 初中数学 > 题目详情

【题目】完成下面的证明.

已知:如图,ABDE,求证:∠D+BCD﹣∠B180°.

证明:过点CCFAB

CFAB(已作),

∴∠1   

∵∠2=∠BCD﹣∠1

∴∠2=∠BCD﹣∠B   

ABDECFAB(已知),

CFDE   

∴∠D+2180°   

∴∠D+BCD﹣∠B180°  

【答案】B,(等量代换),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补),(等量代换)

【解析】

过点CCFAB,求出CFDE,根据平行线的性质得出∠1=∠B,∠D+∠2180°,即可得出答案.

证明:过点CCFAB

CFAB(已作),

∴∠1 B 

∵∠2BCD∠1

∴∠2BCDB (等量代换) 

ABDECFAB(已知),

CFDE (平行于同一条直线的两直线平行) 

∴∠D+∠2180° (两直线平行,同旁内角互补) 

∴∠D+∠BCDB180° (等量代换) 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴的单位长度为1


1)如果点AD表示的数互为相反数,那么点B表示的数是多少?
2)如果点BD表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?
3)当点B为原点时,若存在一点MA的距离是点MD的距离的2倍,则点M所表示的数是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.

根据以上规则,回答下列问题:

(1)求一次“有效随机转动”可获得“乐”字的概率;

(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了微商,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤

星期

与计划量的差值

(1)根据记录的数据可知前三天共卖出 ______ 斤;

(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 ______ 斤;

(3)本周实际销售总量达到了计划数量没有?

(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】陶军于上周购买某农产品10000斤,每斤元进入批发市场后共占5个摊位.每个摊位最多容纳2000斤该品种的农产品,每个摊位的市场管理价位为每天20元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况(购进当日该农产品的批发价格为每斤元)

星期

与前一天的价格涨跌情况(元)

当天的交易量(斤)

2500

2000

3000

1500

1000

1)星期四该农产品价格为每斤多少元?

2)本周内该农产品的最高价格为每斤多少元?最低价格为每斤多少元?

3)陶军在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专卖店销售AB两种型号的新能源汽车.上周售出1A型车和3B型车,销售额为96万元;本周已售出2A型车和1B型车,销售额为62万元.

1)求每辆A型车和B型车的售价各为多少万元?

2)甲公司拟向该店购买AB两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=4cmBC=6cm,现有一动点PA出发以2cm/秒的速度,沿矩形的边A—B—C—D回到点A,设点P的运动时间为t秒,

(1)t=3秒时,求BP的长;

(2)t为何值时,连接BPAP,△ABP的面积为长方形的面积三分之一?

(3)QAD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=30°,点A1A2A3在射线ON上,点B1B2B3在射线OM上,A1B1A2A2B2A3A3B3A4均为等边三角形.若OA1=1,则AnBnAn+1的边长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图②,利用网格线画,使它与关于直线对称.若每个小正方形边长为1,则的面积为__.

2)如图①,用直尺和圆规在ABC的一边上确定一点,使PC=PB.ABP的周长为16BC=8,则ABC的周长为__.

查看答案和解析>>

同步练习册答案