精英家教网 > 初中数学 > 题目详情

【题目】某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.

根据以上规则,回答下列问题:

(1)求一次“有效随机转动”可获得“乐”字的概率;

(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.

【答案】(1);(2)

【解析】

试题分析:(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;

(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.

试题解析:(1)转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;一次“有效随机转动”可获得“乐”字的概率为:

(2)画树状图得:

共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,并且满足.一动点从点出发,在线段上以每秒个单位长度的速度向点移动;动点从点出发在线段上以每秒个单位长度的速度向点运动,点分别从点同时出发,当点运动到点时,点随之停止运动.设运动时间为()

(1)两点的坐标;

(2)为何值时,四边形是平行四边形?并求出此时两点的坐标.

(3)为何值时,是以为腰的等腰三角形?并求出此时两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 ,在平面直角坐标系中,直线AB x轴,线段AB y 轴交于点M ,已知点 A的坐标是(-23), BM4,点C 与点 B 关于 x 轴对称.

1)在图中描出点C ,并直接写出点 B 和点C 的坐标:B C

2)联结 AC BC AC x 轴交于点 D ,试判断ABC 的形状,并直接写出点 D的坐标;

3)在坐标平面内, x 轴的下方,是否存在这样的点 P ,使得ACP 是等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与应用:

观察下列各式:

1+3   2

1+3+5   2

1+3+5+7   2

1+3+5+7+9   2

……

问题:(1)在横线上填上适当的数;

2)写出一个能反映此计算一般规律的式子;

3)根据规律计算:(﹣1+(﹣3+(﹣5+(﹣7++(﹣2019).(结果用科学记数法表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCAm°,ABC和∠ACD的平分线相交于点A1得∠A1A1BC和∠A1CD的平分线相交于点A2得∠A2;…;A2018BC和∠A2018CD的平分线交于点A2019则∠A2019________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.

(1)请你判断并写出FE与FD之间的数量关系(不需证明);

(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种蔬菜千克,不加工直接出售每千克可卖元;如果经过加工重量减少了20%,价格增加了40%,回答下列问题.

(1)千克这种蔬菜不加工直接出售可卖_______.

(2)千克这种蔬菜加工后可卖多少元.

(3)现有这种蔬菜800千克,不加工直接出售每千克可卖1.5元,那么加工后原800千克这种蔬菜可卖多少元?比加工前多卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校积极开展阳光体育进校园活动,决定开设 A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目,规定每个学生必须参加一项活动。学校为了了解学生最喜欢哪一种运动项目,设计了以下四种调查方案.

方案一:调查该校七年级女生喜欢的运动项目

方案二:调查该校每个班级学号为 5 的倍数的学生喜欢的运动项目

方案三:调查该校书法小组的学生喜欢的运动项目

方案四:调查该校田径队的学生喜欢的运动项目

1)上面的调查方案最合适的是

学校体育组采用了(1)中的方案,将调查的结果绘制成如下两幅不完整的统计图表.

最喜欢的运动项目人数调查统计表 最喜欢的运动项目人数分布统计图

请你结合图表中的信息解答下列问题:

2)这次抽样调查的总人数是 m

3)在扇形统计图中,A 项目对应的圆心角的度数为

4)已知该校有 1200 名学生,请根据调查结果估计全校学生最喜欢乒乓球的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示其中阅读时间是8~10小时的频数和频率分别是( )

A. 150.125 B. 150.25 C. 300.125 D. 300.25

查看答案和解析>>

同步练习册答案