【题目】如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.
在平面直角坐标系xOy中,
(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.
①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:___.
②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;
(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:P_____(用含n的代数式表示).
【答案】(1)①(-1,0)②D(-2,0);(2)n-3<t≤n-2或n+2≤t<n+3.
【解析】
(1)①过点E作EF⊥OC,垂足为F,根据等边三角形的性质可得DF=FC=,OF=,即可求OD=1,即可求点D坐标;
②分点E与坐标原点O重合或点E在边OA的延长线上两种情况讨论,根据反称点定义可求点D的坐标;
(2)分点E在点E在AB的延长线上或在BA的延长线上,根据平行线分线段成比例的性质,可求CF=DF的值,即可求点D的横坐标t的取值范围.
(1)①如图,过点E作EF⊥OC,垂足为F,
∵EC=ED,EF⊥OC
∴DF=FC,
∵点C的坐标为(2,0),
∴AO=CO=2,
∵点E是AO的中点,
∴OE=1,
∵∠AOC=60°,EF⊥OC,
∴∠OEF=30°,
∴OE=2OF=1
∴OF=,
∵OC=2,
∴CF==DF,
∴DO=1
∴点D坐标(-1,0)
故答案为:(-1,0)
②∵等边三角形AOC的两个顶点为O(0,0),C(2,0),
∴OC=2.
∴AO=OC=2.
∵E是等边三角形AOC的边AO所在直线上一点,且AE=2,
∴点E与坐标原点O重合或点E在边OA的延长线上,
如图,若点E与坐标原点O重合,
∵EC=ED,EC=2,
∴ED=2.
∵D是边OC所在直线上一点,且D与C不重合,
∴D点坐标为(-2,0)
如图,若点E在边OA的延长线上,且AE=2,
∵AC=AE=2,
∴∠E=∠ACE.
∵△AOC为等边三角形,
∴∠OAC=∠ACO=60°.
∴∠E=∠ACE=30°.
∴∠OCE=90°.
∵EC=ED,
∴点D与点C重合.
这与题目条件中的D与C不重合矛盾,故这种情况不合题意,舍去,
综上所述:D(-2,0)
(2)∵B(n,0),C(n+1,0),
∴BC=1,
∴AB=AC=1
∵2≤AE<3,
∴点E在AB的延长线上或在BA的延长线上,
如图点E在AB的延长线上,过点A作AH⊥BC,过点E作EF⊥BD
∵AB=AC,AH⊥BC,
∴BH=CH=,
∵AH⊥BC,EF⊥BD
∴AH∥EF
,
若AE=2,AB=1
∴BE=1,
∴=1
∴BH=BF=
∴CF==DF
∴D的横坐标为:n--=n-2,
若AE=3,AB=1
∴BE=2,
∴=
∴BF=2BH=1
∴CF=DF=2
∴D的横坐标为:n-1-2=n-3,
∴点D的横坐标t的取值范围:n-3<t≤n-2,
如图点E在BA的延长线上,过点A作AH⊥BC,过点E作EF⊥BD,
同理可求:点D的横坐标t的取值范围:n+2≤t<n+3,
综上所述:点D的横坐标t的取值范围:n-3<t≤n-2或n+2≤t<n+3.
故答案为:n-3<t≤n-2或n+2≤t<n+3.
科目:初中数学 来源: 题型:
【题目】仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,.我们知道,假分数可以化为带分数,例如:=2+=2,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:=1+.
(1)将分式化为带分式;
(2)当x取哪些整数值时,分式的值也是整数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H.
(1)如图1,求证:PQ=PE;
(2)如图2,G是圆上一点,∠GAB=30,连接AG交PD于F,连接BF,tan∠BFE=,求∠C的度数;
(3)如图3,在(2)的条件下,PD=6,连接QG交BC于点M,求QM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片 ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、 AC于点E、G.连接GF.则下列结论错误的是( )
A. ∠AGD=112.5° B. 四边形AEFG是菱形 C. tan∠AED=2 D. BE=2OG
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AC,AB上,且BD=CE,DC=BF,连结DE,EF,DF,∠1=60°
(1)求证:△BDF≌△CED.
(2)判断△ABC的形状,并说明理由.
(3)若BC=10,当BD= 时,DF⊥BC.(只需写出答案,不需写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形纸片ABCD中,AB=2,BC=3,操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:
(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等给出证明,如果不全等,请说明理由;
(2)如图2,若点B1与CD的中点重合,求△FCB1和△B1DG的周长之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形,
(1)求证:四边形ADCE是平行四边形;
(2)当△ABC满足什么条件时,平行四边形ADCE是矩形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com