精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形纸片ABCD中,对角线ACBD交于点O,折叠正方形纸片 ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交ABAC于点EG.连接GF.则下列结论错误的是( )

A. AGD=112.5° B. 四边形AEFG是菱形 C. tan∠AED=2 D. BE=2OG

【答案】C

【解析】: ACBD是正方形ABCD的对角线

∴∠ABD=GAD=ADB=BAC=45°

由对折的性质得DE平分∠ADB

ADG=22.5°

GAD+ADG+AGD=180°ADG=22.5°GAD=45°

AGD=112.5°

A正确;

由题意知,四边形AEFG是平行四边形

由对折的性质得AE=EF

四边形AEFG是菱形

B正确;

GF=EF=AE

ABD=45°EFBD

BE=EF

EF=AE

BE=AE

GFO=45°ACBD

GF=OG

BE=GFGF=OG

BE=2OG

D正确;

BE=AE

AD=BE+AE=AE+AE=(1+)AE

tanAED=== .

C错误.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在五边形数的证明上.如图为前几个五边形数的对应图形,请据此推断,第10五边形数应该为(  ),第2018五边形数的奇偶性为(  )

A. 145;偶数 B. 145;奇数 C. 176;偶数 D. 176;奇数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知 ABC中,AB=AC BAC=90°,直角∠ EPF的顶点PBC中点,两边PEPF分别交ABAC于点EF,给出以下四个结论:①AE=CF②△ EPF是等腰直角三角形; 2S四边形AEPF=S ABCBE+CF=EF.当∠ EPF ABC内绕顶点P旋转时(点EAB重合).上述结论中始终正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图

(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;

(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,点为坐标原点,点轴的负半轴上,点轴的正半轴上,以为斜边向上作等腰直角轴于点.

1)如图1,求点的坐标;

2)如图2,动点从点出发以每秒1个单位长度的速度沿轴的正半轴运动,设运动时间为秒,连接,设的面积为,请用含的式子来表示

3)如图3,在(2)的条件下,当点的延长线上时,点在直线的下方,且.连接,取的中点,连接并延长交于点,连接,当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且DC不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.
在平面直角坐标系xOy中,
1)已知等边三角形AOC的顶点C的坐标为(20),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.
①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:___.
②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;
2)若等边三角形ABC的顶点为Bn0),Cn+10),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:P_____(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.

(1)求证:△ABM≌△DCM;

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当四边形MENF是正方形时,求AD:AB的值.

查看答案和解析>>

同步练习册答案