精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,点D△ABC的边AB的中点,四边形BCED是平行四边形,

(1)求证:四边形ADCE是平行四边形;

(2)当△ABC满足什么条件时,平行四边形ADCE是矩形?

【答案】见解析

【解析】试题分析证明是平行四边形的方法有很多此题用一组对边平行且相等较为简单在平行四边形的基础上只需一个角是直角即可.

试题解析证明:(1四边形BCED是平行四边形BD=CEBDCE.又∵DABC的边AB的中点AD=BDDA=CE.又∵DACE四边形ADCE是平行四边形.

2)当ABC为等腰三角形且AC=BC四边形ADCE是矩形证明如下

AC=BCDABC的边AB的中点CDAD∴∠CDA=90°四边形ADCE是平行四边形四边形ADCE是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且DC不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.
在平面直角坐标系xOy中,
1)已知等边三角形AOC的顶点C的坐标为(20),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.
①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:___.
②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;
2)若等边三角形ABC的顶点为Bn0),Cn+10),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:P_____(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PGDCH,折痕为EF,连接BPBH

1)求证:∠APB=∠BPH

2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.

(1)求证:△ABM≌△DCM;

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当四边形MENF是正方形时,求AD:AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.

(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;

(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;

3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当ABC为直角三角形时,写出点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲乙两名采购员去同一家饲料公司分别购买两次饲料,两次购买饲料价格分别为m/千克和n/千克,且m≠n,两名采购员的采购方式也不同,其中甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.

(1)甲、乙所购饲料的平均单价各是多少?(用字母mn表示)

(2)谁的购货方式更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:如图1,在ABC看,把ABA顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称A'B'C'ABC旋补三角形”,AB'C'B'C'上的中线AD叫做ABC旋补中线,点A叫做旋补中心”.

特例感知:

(1)在图2,图3中,AB'C'ABC旋补三角形”,ADABC旋补中线”.

①如图2,当ABC为等边三角形时,ADBC的数量关系为AD=   BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为   

猜想论证:

(2)在图1中,当ABC为任意三角形时,猜想ADBC的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为全力助推句容建设,大力发展句容旅游,某公司拟派AB两个工程队共同建设某区域的绿化带.已知A工程队2人与B工程队3人每天共完成310米绿化带,A工程队的5人与B工程队的6人每天共完成700米绿化带

(1)求A队每人每天和B队每人每天各完成多少米绿化带;

(2)该公司决定派AB工程队共20人参与建设绿化带,若每天完成绿化带总量不少于1480米,且B工程至少派出2人,则有哪几种人事安排方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

同步练习册答案