【题目】如图,反比例函数y= 与一次函数y=ax+b的图象交于点A(2,2)、B( ,n).
(1)求这两个函数解析式;
(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求m的值.
【答案】
(1)解:∵A(2,2)在反比例函数 的图象上,
∴k=4.
∴反比例函数的解析式为 .
又∵点B( ,n)在反比例函数 的图象上,
∴ ,解得:n=8,
即点B的坐标为( ,8).
由A(2,2)、B( ,8)在一次函数y=ax+b的图象上,
得: ,
解得: ,
∴一次函数的解析式为y=﹣4x+10
(2)解:将直线y=﹣4x+10向下平移m个单位得直线的解析式为y=﹣4x+10﹣m,
∵直线y=﹣4x+10﹣m与双曲线 有且只有一个交点,
令 ,得4x2+(m﹣10)x+4=0,
∴△=(m﹣10)2﹣64=0,
解得:m=2或m=18
【解析】(1)由点A在反比例函数的图象上,结合反比例函数图象上的点的坐标特征即可得出反比例函数的解析式;由点B的横坐标以及反比例函数的解析式即可得出点B的坐标,再由A、B点的坐标利用待定系数法即可求出一次函数得解析式;(2)结合(1)中得结论找出平移后的直线的解析式,将其代入反比例函数解析式中,整理得出关于x的二次方程,令其根的判别式△=0,即可得出关于m的一元二次方程,解方程即可得出结论.
科目:初中数学 来源: 题型:
【题目】某学校为了解2017年八年级学生课外书籍借阅情况.从中随机抽取了40名学生进行调查,根据调查结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类本数占这40名学生借阅总本数的40%.
(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角α的度数;
(2)该校2017年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C在AB上,△DAC、△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,则下列结论:①AE=DB;②CM=CN;③△CMN为等边三角形;④MN//BC;
正确的有_________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是( )
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:==+=1+,==+=2+,则和都是“和谐分式”.
(1)下列分式中,属于“和谐分式”的是______(填序号);
①;②;③;④
(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=______+______;
(3)应用:先化简-÷,并求x取什么整数时,该式的值为整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线EF与AB交于点M,与CD交于点O,OG平分∠DOF,若∠COM=120°,∠EMB= ∠COF.
(1)求∠FOG的度数;
(2)写出一个与∠FOG互为同位角的角;
(3)求∠AMO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.
(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;
①求证:点F是AD的中点;
②判断BE与CF的数量关系和位置关系,并说明理由;
(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com