精英家教网 > 初中数学 > 题目详情

【题目】九(1)班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类别,每位同学仅选一项.根据调査结果绘制了不完整的频数分布表和扇形统计图.

类别

 频数(人数)

 频率

 小说

a

0.5

戏剧

4

散文

10

0.25

 其他

6

 合计

b

1

根据图表提供的信息,回答下列问题:

1)直接写出:a   b   m   

2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请求选取的2人恰好是甲和乙的概率.

【答案】(1)204015;(2

【解析】

1)先由散文对应的频数及其频率可得总人数b,再用总人数乘以小数对应频率求得其人数a,用其他人数除以总人数可得m的值;

2)利用树状图法展示所有12种等可能的结果数,再找出恰好是甲和乙的结果数,然后根据概率公式求解.

解:(1)∵被调查的总人数b10÷0.2540(人),

a40×0.520m%×100%15%,即m15

故答案为:204015

2)画树状图如下:

共有12种等可能的结果数,其中恰好是甲和乙的只有2种,

所以选取的2人恰好是甲和乙的概率=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:抛物线C1y=﹣(x+m2+m2m0),抛物线C2y=(xn2+n2n0),称抛物线C1C2互为派对抛物线,例如抛物线C1y=﹣(x+12+1与抛物线C2y=(x2+2是派对抛物线,已知派对抛物线C1C2的顶点分别为AB,抛物线C1的对称轴交抛物线C2C,抛物线C2的对称轴交抛物线C1D

1)已知抛物线①y=﹣x22x②y=(x32+3③y=(x2+2④yx2x+,则抛物线①②③④中互为派对抛物线的是   (请在横线上填写抛物线的数字序号);

2)如图1,当m1n2时,证明ACBD

3)如图2,连接ABCD交于点F,延长BAx轴的负半轴于点E,记BDx轴于GCDx轴于点H,∠BEO=∠BDC

求证:四边形ACBD是菱形;

若已知抛物线C2y=(x22+4,请求出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,与直线交于点,直线轴交于点

(1)求该抛物线的解析式.

(2)是抛物线上第四象限上的一个动点,连接,当的面积最大时,求点的坐标.

(3)将抛物线的对称轴向左平移3个长度单位得到直线,点是直线上一点,连接,若直线上存在使最大的点,请直接写出满足条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分~74分;D级:60分以下)

(1)求出D级学生的人数占全班总人数的百分比;

(2)求出扇形统计图(图2)中C级所在的扇形圆心角的度数;

(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是等腰直角三角形,ABACD为平面内的任意一点,且满足CDAC,若△ADB是以AD为腰的等腰三角形,则∠CDB的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ab是正数,且a+b2,则的最小值=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在等腰直角三角形中,DE分别在上,且,此时有

(1)如图①中 绕点A旋转至如图②时上述结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

(2)将图①中的绕点A旋转至DE与直线AC垂直,直线BDCE于点F,若,请画出图形,并求出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题.

1)求mn的值;

2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,sin Asin BAB12MAC的中点,BM的垂直平分线交AB于点N,交BM于点P,那么BN的长为_____

查看答案和解析>>

同步练习册答案