精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=x2+bx+3经过点A(﹣1,8),顶点为M;

(1)求抛物线的表达式;

(2)设抛物线对称轴与x轴交于点B,连接AB、AM,求△ABM的面积.

【答案】(1)y=x2﹣4x+3;(2).

【解析】

(1)把点A的坐标代入函数解析式,列出关于系数b的方程,通过解方程求得b的值即可;

(2)(1)中函数解析式得到对称轴为x=2,然后结合三角形的面积公式进行解答即可.

解:(1)∵抛物线y=x2+bx+3经过点A(﹣1,8),

8=(-1)2﹣b+3,

解得b=﹣4,

∴所求抛物线的表达式为y=x2﹣4x+3;

(2)AH⊥BM于点H,

∵由抛物线y=x2﹣4x+3解析式可得,

M的坐标为(2,﹣1),点B的坐标为(2,0),

BM=1,

∵对称轴为直线x=2,

AH=3,

∴△ABM的面积.

故答案为(1)y=x2﹣4x+3;(2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一类随机事件概率的计算方法:设试验结果落在某个区域S中的每一点的机会均等,用A表示事件试验结果落在S中的一个小区域M,那么事件A发生的概率P(A)=有一块边长为30cm的正方形ABCD飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.求下列事件发生的概率:

(1)在飞镖游戏板上画有半径为5cm的一个圆(如图1),求飞镖落在圆内的概率;

(2)飞镖在游戏板上的落点记为点O,求△OAB为钝角三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+cx轴交A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点为点E.

(1)求抛物线的解析式;

(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;

(3)N在抛物线对称轴上,点Mx轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD相交于点O,点EOA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:①SBCE=36;SABE=12;④△AEFACD,其中一定正确的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数a<0)图象与x轴的交点AB的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:

①16a﹣4b+c<0;②P(﹣5,y1),Qy2)是函数图象上的两点,则y1y2;③a=﹣c;④ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过边长为2的等边的边上一点,作于点,点延长线上一点,当时,连接边于点,则的长为(

A.1B.2C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中,直线 y1=x+3与抛物线y2=﹣+2x 的图象如图,点P是 y2 上的一个动点,则点P到直线 y1 的最短距离为()

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为___________cm

查看答案和解析>>

同步练习册答案