分析 要证明BC=DE,只要证明三角形ABC和ADE全等即可.两三角形中已知的条件有AB=AD,AC=AE,只要再得出两对应边的夹角相等即可.我们发现∠ABC和∠DAE都是由一个相等的角加上∠DAC,因此∠ABC=∠DAE,这样就构成了两三角形全等的条件(SAS).
解答 证明:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
即∠BAC=∠DAE.
在△ABC与又△ADE中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAC=∠DAE}\\{AC=AE}\end{array}\right.$,
∴△ABC≌△ADE(SAS),
∴BC=DE.
点评 本题主要考查了全等三角形的判定,利用全等三角形来得出线段相等是解此类题的常用方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com