精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BECD交CD的延长线于点E,连接AE,过A作AFAE交CD于点F.

(1)求证:AE=AF;

(2)求证:CD=2BE+DE.

【答案】(1)、证明过程见解析;(2)、证明过程见解析

【解析】

试题分析:(1)、通过证AEB≌△AFC(SAS),得到AE=AF;(2)、如图,过点A作AGEC,垂足为G,通过证BED≌△AGD(AAS),得到ED=GD,BE=AG,易证CF=BE=AG=GF.因为CD=DG+GF+FC,所以CD=DE+BE+BE,故CD=2BE+DE.

试题解析:(1)、如图,∵∠BAC=90°,AFAE, ∴∠EAB+BAF=BAF+FAC=90°

∴∠EAB=FAC, BECD, ∴∠BEC=90° ∴∠EBD+EDB=ADC+ACD=90°

∵∠EDB=ADC, ∴∠EBA=ACF, AEB与AFC中,

∴△AEB≌△AFC(ASA), AE=AF;

(2)、如图,过点A作AGEC,垂足为G. AGEC,BECE, ∴∠BED=AGD=90°

点D是AB的中点, BD=AD. BED与AGD中, ∴△BED≌△AGD(AAS), ED=GD,BE=AG, AE=AF ∴∠AEF=AFE=45° ∴∠FAG=45° ∴∠GAF=GFA, GA=GF, CF=BE=AG=GF, CD=DG+GF+FC, CD=DE+BE+BE, CD=2BE+DE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000000 7平方毫米,用科学记数法表示为平方毫米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:14a2_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,若∠A:∠B:∠C=234,则∠A、∠B、∠C的外角的比是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与x轴交于A60)、B0)两点,与y轴交于点C,过抛物线上点M13)作MNx轴于点N,连接OM

1)求此抛物线的解析式;

2)如图1,将△OMN沿x轴向右平移t个单位(0t5)到△OMN′的位置,MN′、MO′与直线AC分别交于点EF

①当点FMO′的中点时,求t的值;

②如图2,若直线MN′与抛物线相交于点G,过点GGHMO′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1和2,在△ABC中,AB=13,BC=14,BH=5.

探究:如图1,AH⊥BC于点H,则AH= ,AC= ,△ABC的面积

拓展:如图2,点D在AC上(可与点A,C重合),分别过点A.C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为

(1)用含x,m,n的代数式表示

(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;

(3)对给定的一个x值,有时只能确定唯一的点D,直接写出这样的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为a的正方形中挖去一个边长为b的小正方形(ab)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )

A. (a+b)2=a2+2ab+b2 B. (a﹣b)2=a2-2ab+b2

C. a+b)(a﹣b= a2﹣b2 D. (a+2b)(a﹣b)=a2+ab﹣2b2

查看答案和解析>>

同步练习册答案