【题目】如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.
(1)△BEF是等腰三角形吗?试说明理由;
(2)若AB=4,AD=8,求CF的长度.
【答案】见解析
【解析】试题分析:(1)由AD∥BC得到∠1=∠2,由折叠性质得到∠2=∠FEB,则∠1=∠FEB,于是可判断△EBF是等腰三角形;
(2)设BE=x,则DE=x,AE=AD﹣DE=8﹣x,在Rt△ABE中,理由勾股定理得到(8﹣x)2+42=x2,解得x=5,而△EBF是等腰三角形,所以BF=BE=5,即可得到CF的长.
试题解析:解:(1)△BEF是等腰三角形.理由如下:
∵四边形ABCD为矩形,∵AD∥BC,∴∠1=∠2,∵长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,∴∠2=∠FEB,∴∠1=∠FEB,∴△BEF是等腰三角形;
(2)设BE=x,则DE=x,∴AE=AD﹣DE=8﹣x,在Rt△ABE中,(8﹣x)2+42=x2,解得x=5,∵△EBF是等腰三角形,∴BF=BE=5,∴CF=BC-BF=AD-BF=8-5=3.
科目:初中数学 来源: 题型:
【题目】如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.
请将以下解答补充完整,
解:因为∠DAB+∠D=180°
所以DC∥AB__________
所以∠DCE=∠B__________
又因为∠B=95°,
所以∠DCE=________°;
因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,
所以∠CAB=________=________°,
因为DC∥AB
所以∠DCA=∠CAB,__________
所以∠DCA=________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:随着人们认识的不断深入,毕达哥拉斯学派逐渐承认不是有理数,并给出了证明.假设是有理数,那么存在两个互质的正整数p,q,使得,于是,两边平方得p2=2q2 . 因为2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,代入上式,得4s2=2q2 , 即q2=2s2 , 所以q也是偶数,这样,p和q都是偶数,不互质,这与假设p,q互质矛盾,这个矛盾说明, 不能写成分数的形式,即不是有理数.请你有类似的方法,证明不是有理数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A、B的坐标分别为A(-4,0)、B(2,0),点C在y轴上,且△ABC的面积为6,以点A、B、C为顶点作□ABCD.若过原点的直线平分该□ABCD的面积,则此直线的解析式是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,∠BAD的平分线交于E,点在上,且,连接.
(1) 判断四边形的形状并证明;
(2) 若、相交于点,且四边形的周长为, ,求的长度及四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com