【题目】已知:如图,△AOB的顶点O在直线上,且AO=AB.
(1)画出△AOB关于直线成轴对称的图形△COD,且使点A的对称点为点C;
(2)在(1)画出的图形中,AC与BD的位置关系是 ;
(3)在(1)画出的图形中连接AD,如果∠ABD=2∠ADB.
求证:△AOC是等边三角形,并直接写出∠DAO∶∠DAB的值.
【答案】(1)作图见解析; (2) AC //BD;(3) 证明见解析,∠DAO∶∠DAB =1: 3
【解析】
(1)按照题中描述作图可得;
(2)利用平行线的判定定理,找到平行线间角的关系,可判定出直线的关系;
(3)利用三角形中等角对等边可得到所求角处在等边三角形中,故得出所求∠DAO∶∠DAB的值.
解:(1)如图所示,△COD为所求作.
(2) AC //BD,证明如下:
∵△ABO和△COD对称
∴∠BAO= ∠DCO, ∠ABO=∠CDO, OC=OA, OB=OD,
∴ ∠OCA= ∠OAC, ∠ODB = ∠OBD,
∵四边形的内角和为360°,
∴∠BAO +∠DCO+∠ABO + ∠CDO + ∠OCA+∠OAC + ∠ODB + ∠OBD = 360°,
∴∠CAO+ ∠OAB +∠ABO + ∠OBD = 180°,
∴∠CAB + ∠ABD = 180,
∴AC //BD
(3) ∵△ABO和△COD对称
∴∠ABO=∠CDO,OB=OD
∴∠OBD=∠ODB
∴∠ABO+∠OBD=∠CDO+ODB
∴∠ABD=∠CDB
∵∠ABD=2∠ADB
∴∠CDB=2∠ADB
∵∠CDB=∠ADB+∠ADC
∴2∠ADB=∠ADB+∠ADC
∴∠ADB=∠ADC
∵AC//BD
∴∠ADB=∠CAD
∴∠ADC=∠CAD
∴ CD=AC
∵△ABO和△COD对称且AB=AO ;
∴AB=AO=CO=CD=AC
∴CA=CO= AO
∴△AOC是等边三角形
∴∠CAO=∠ACO=60°
设∠DAO=x,则∠CAD=60°-x
∵CA=CD
∴∠CAD=∠CDA=60°-x
∴∠DCA =60°+2x
∴∠DCO =2x
∵△ABO和△COD对称
∴∠DCO =∠BAO =2x
∴∠DAB=3x
∴∠DAO∶∠DAB =1: 3
科目:初中数学 来源: 题型:
【题目】反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1=_____,k2=____,一次函数的图象交x轴于点_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+∠EDF=180°,以①②③中的两个作为条件,另一个作为结论,可以使结论成立的有几个( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;
(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;
(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一、二两班共有95人,他们的体育达标率为60%,如果一班的体育达标率为40%,二班达标率为78%,求一、二两班的人数各是多少?若设一、二两班的学生人数各有x人、y人.
(1)填写表:
表格依次填_____,_____,_____,_____,_____.
(2)列出二元一次方程组:_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是( )
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)
(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;
(2)你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com