分析 (1)根据平行四边形的对边相等的性质可以得到AD=BC,AB=CD,又点E、F是AB、CD中点,所以AE=CF,然后利用边角边即可证明两三角形全等;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形可得四边形BEDF是平行四边形;再根据直角三角形斜边上的中线等于斜边的一半可得DE=EB=$\frac{1}{2}$AB,从而可得四边形BFDE为菱形.
解答 证明:(1)在?ABCD中,AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=$\frac{1}{2}$AB,CF=$\frac{1}{2}$DC,
∴AE=CF,
在△ADE和△CBF中,
$\left\{\begin{array}{l}{AD=BC}\\{∠A=∠C}\\{AE=CF}\end{array}\right.$,
∴△ADE≌△CBF(SAS);
(2)∵AB=CD,AE=CF,
∴BE=DF,
又AB∥CD,
∴BE∥DF,
∴四边形BEDF是平行四边形,
∵∠ADB=90°,
∴点E为边AB的中点,
∴DE=EB=$\frac{1}{2}$AB,
∴四边形BFDE为菱形.
点评 此题主要考查了菱形的判定,以及全等三角形的判定,关键是掌握一组邻边相等的平行四边形是菱形,直角三角形斜边上的中线等于斜边的一半.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6$\sqrt{3}$ | B. | 8$\sqrt{3}$ | C. | 9$\sqrt{3}$ | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com