精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠C=90°OAB上一点,以O为圆心,OA为半径作圆与BC相切于点E,交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF

1)求证:AE平分∠BAC

2)若sinEFA=AF=,求线段AC的长

【答案】1)见解析;(26.4

【解析】

1)连接OE,根据切线的性质可得:∠BEO=C=90°,则OEAC,根据同圆的半径相等,可解决问题;
2)过AAHEFH,根据三角函数先计算AH=4,证明AEH是等腰直角三角形,则AE=AH=8,证明AED∽△ACE,可解决问题.

1)连接OE

BC是⊙O的切线,

∴∠BEO=C=90°

OEAC

∴∠CAE=OEA

OE=OA

∴∠OEA=OAE

∴∠OAE=CAE,即AE平分∠BAC

2)过AAHEFH

中,==

AF=

AH=

AD是⊙O的直径,

∴∠AED=90°

EF平分∠AED

∴∠AEF=45°

∴△AEH是等腰直角三角形,

=8

===

AD=10

=90°

AC=6.4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在菱形ABCD中,∠A120°,点EBC边的中点,点P是对角线BD上一动点,设PD的长度为xPEPC的长度和为y,图2y关于x的函数图象,其中H是图象上的最低点,则a+b的值为(  )

A.7B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线yax2+2x+ca0),与y轴交于点A06),与x轴交于点B60).

1)求这条抛物线的表达式及其顶点坐标;

2)设点P是抛物线上的动点,若在此抛物线上有且只有三个P点使得△PAB的面积是定值S,求这三个点的坐标及定值S

3)若点F是抛物线对称轴上的一点,点P是(2)中位于直线AB上方的点,在抛物线上是否存在一点Q,使得PQBF为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为

1)求二次函数的解析式和直线的解析式;

2)点是直线上的一个动点,过点轴垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;

3)在抛物线上是否存在异于的点,使边上的高?若存在求出点的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,正B(30)C(70),过点作直线的横坐标(

A.4B.C.D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理历史悠久,三国时期的赵爽证明了勾股定理,后人借助“赵爽弦图”,用三个正方形证明勾股定理,如图所示,BCMG在同一条直线上,四边形ABCD,四边形CEFG,四边形AMFN都为正方形,若五边形ABGFN的面积为34CM=2,则△ABM的面积为( )

A.10B.C.5D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】奇异果是新西兰的特产,其实它的祖籍在中国,又名猕猴桃20181月份至6月份我市某大型超市新西兰品种的奇异果销售价格y(/)与月份x(1≤x≤6,且x为整数)之间的函数关系如下表:

7月份至12月份奇异果的销售价格y(/)与月份x之间满足函数关系式:y=2x+20(7≤x≤12x为整数).该超市去年奇异果销售数量z()与月份x(1≤x≤12,且x为整数)之间存在如图所示的变化趋势.若去年该超市奇异果的进价为每盒20元,销售奇异果需要一名超市员工,该员工每月固定人工费用为1500元.

1)请观察图表中的数据信息直接写出20181月份至6月份销售价格yx之间的函数关系式__ ,根据如图所示的变化趋势,直接写出去年每月销售数量zx之间满足的函数关系式__

2)求出去年每月该超市的利润w()与月份x之间满足的函数关系式.(利润=收入成本费用)

3)从今年1月份开始,超市决定每卖出一盒奇异果,公司向希望工程捐款2元,奇异果的进价为每盒26元,虽然今年1月份奇异果的销售价格比去年12月份增加4元,但1月份销售数量仍比去年12月份增加了0.4a%2月份销售价格在1月份的基础上增加了0.5a%,由于其它水果陆续上市,2月份的销售量与1月份持平,这样2月份的利润达到了15780元,请参考以下数据,求出整数a的值.(参考数据:=2025=2116=2209)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x()之间的部分函数图象如图.

(1)AB两地相距____千米,甲的速度为____千米/分;

(2)求线段EF所表示的yx之间的函数表达式;

(3)当乙到达终点A时,甲还需多少分钟到达终点B

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用.

1)求甲、乙两工程队每天能完成塑胶改造的面积;

2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求的函数解析式;

3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.

查看答案和解析>>

同步练习册答案