精英家教网 > 初中数学 > 题目详情

【题目】等边△ABC中,点EAB上,点DCA的延长线上,且ED=EC.试探索以下问题:

1)如图1,当EAB中点时,试确定线段ADBE的大小关系,请你直接写出结论:AD BE

2)如图2,若点E为线段AB上任意一点,(1)中结论是否成立,若成立,请证明结论,若不成立,请说明理由。

【答案】1AD=BE;(2证明见解析

【解析】分析:(1)根据题意易得∠D=∠AED=30°,即可得AD=AE,再根据AE=BE,即可解题;

(2)通过作EF∥AC构造等边三角形把BE转化为EF,再利用“角角边”易证△AED≌△FCE,可得AD=FE,即可解题.

本题解析:

1AD=BE

(2)过点E作EF∥AC交BC于点F,

∴∠EFB=∠ACB∠BEF=∠BAC∠FEC=∠ECA

∵△ABC是等边三角形,

∴∠ACB=∠BAC=∠B=60°

∴∠EFB=∠BEF=∠B=60°

∴△BEF是等边三角形,

∴BE=EF

∵ED=EC

∴∠D=∠ECA

∴∠D=∠FEC

∵∠BFE=∠BAC=60°

∴∠EAD=∠CFE=120°

在△AED和△FCE中,

∴△AED≌△FCEAAS),

∴AD=FE

∴AD=BE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知甲同学手中藏有三张分别标有数字、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.

(1)请你用树形图或列表法列出所有可能的结果;

(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果不等式(a1)x>a1的解集是x<1,那么a的取值范围是(  )

A. a≤1B. a<1C. a≥1D. a<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是(

转动转盘的次数n

100

150

200

500

800

1000

落在“铅笔”区域的次数m

68

108

140

355

560

690

落在“铅笔”区域的频率

0.68

0.72

0.70

0.71

0.70

0.69


A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70
B.假如你去转动转盘一次,获得铅笔的概率大约是0.70
C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次
D.转动转盘10次,一定有3次获得文具盒

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽去糖果店买糖果,她买n斤硬糖,每斤a元,买m斤软糖,每斤b元,则她共需付元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,AC=BC,D是AB上的一点,AE⊥CD于点E,BF⊥CD于点F,若CE=BF,AE=EF+BF.试判断AC与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EP平分∠BEF,FP平分∠DFE.试说明:△PEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD折叠,使点A与点C重合,折痕交BC、AD分别于点E、F.

(1)求证:四边形AECF是菱形;
(2)若AB=4,BC=8,求菱形AECF的面积.

查看答案和解析>>

同步练习册答案