【题目】模型与应用.
(模型)
(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.
(应用)
(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .
如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 .
(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)
【答案】(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【解析】(1)过点E作EF∥CD,根据平行于同一直线的两条直线互相平行可得EF∥AB,根据两直线平行,同旁内角互补可得∠1+∠MEF=180°,∠2+∠NEF=180°,即可得∠1+∠2+∠MEN=360° ;(2)①分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;②由上面的解题方法可得答案;(3)过点O作SR∥AB,根据平行于同一直线的两条直线互相平行可得SR∥CD,根据两直线平行,内错角相等可得∠AM1O=∠M1OR,∠C MnO=∠MnOR,所以∠A M1O+∠CMnO=∠M1OR+∠MnOR,即可得∠A M1O+∠CMnO=∠M1OMn=m°,根据角平分线的定义可得∠AM1M2=2∠A M1O,∠CMnMn-1=2∠CMnO,由此可得∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又因∠A M1E+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),由此可得
∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°.
【模型】
(1)如图①,已知AB∥CD,求证∠1+∠2+∠MEN=360°.
证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)900° , 180°(n-1)
分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C MnO=∠MnOR
∴∠A M1O+∠CMnO=∠M1OR+∠MnOR,
∴∠A M1O+∠CMnO=∠M1OMn=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CMnMn-1=2∠CMnO,
∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,
又∵∠A M1E+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
科目:初中数学 来源: 题型:
【题目】某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知凸四边形ABCD中,∠A=∠C=90°.
(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.
(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是( )
A.﹣ =15
B.﹣ =
C.﹣ =15
D.﹣ =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)请你数一数,图中有多少个小于平角的角;
(2)求出∠BOD的度数;
(3)请通过计算说明OE是否平分∠BOC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知|a+b|+|a-b|-2b=0,在数轴上给出关于a,b的四种位置关系如图所示,则可能成立的有( )
A. 1种 B. 2种 C. 3种 D. 4种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在长方形中,AB=4cm,BC=6cm,点为中点,如果点在线段上以每秒2cm的速度由点向点运动,同时,点在线段上由点向点运动.设点运动时间为秒,若某一时刻△BPE与△CQP全等,求此时的值及点的运动速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com