【题目】点 A、B 在数轴上分别表示有理数 a、b,A、B 两点之间的距离表示为 AB, 在数轴上 A、B 两点之间的距离 AB=|a﹣b|.
请用上面的知识解答下面的问题:
(1)数轴上表示 1 和 5 的两点之间的距离是 ,数轴上表示﹣2 和﹣4 的 两点之间的距离是 ,数轴上表示 1 和﹣3 的两点之间的距离是 ;
(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2, 那么 x 为 ;
(3)|x+1|+|x﹣2|取最小值是 .
【答案】(1)4;2;4;(2)|x+1|;1 或﹣3;(3)3.
【解析】
(1)依据数轴上 A、B 两点之间的距离 AB=|a﹣b|进行计算即可;
(2)数轴上 A、B 两点之间的距离 AB=|a﹣b|列出方程求解即可;
(3)|x+1|+|x﹣2|取最小值表示数轴上某点到﹣1 和 2 的距离之和,从而可求 得最小值.
(1)数轴上表示 1 和 5 的两点之间的距离是=|5﹣1|=4; 数轴上表示﹣2 和﹣4 的两点之间的距离=|﹣2﹣(﹣4)|=2; 数轴上表示 1 和﹣3 的两点之间的距离是=|﹣3﹣1|=4;
(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离=|x﹣(﹣1)|=|x+1|;
∵|AB|=2,
∴x+1=±2.
解得:x=1 或 x=﹣3.
(3)|x+1|+|x﹣2|表示数轴上某点到﹣1 和 2 的距离之和.
∴当﹣1≤x≤2 时,|x+1|+|x﹣2|有最小值,最小值为 3.
科目:初中数学 来源: 题型:
【题目】如图所示,是两种长方形铝合金窗框,已知窗框的长都是y米,窗框的宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框2个.
(1)用含x、y的式子表示共需铝合金的长度;
(2)若1m铝合金的平均费用为100元,求当x=1.2,y=1.5时,铝合金的总费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.
(1)两地相距______千米,甲的速度为______千米/分;
(2)直接写出点的坐标______,求线段所表示的与之间的函数表达式;
(3)当乙到达终点时,甲还需______分钟到达终点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,,,直线经过点,且于,于.
(1)当直线绕点旋转到图1的位置时,
①求证:△ADC≌△CEB.
②求证:DE=AD+BE.
(2)当直线绕点旋转到图2的位置时,判断和的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.
(1)求∠OAB的度数及直线AB的解析式;
(2)若△OCD与△BDE的面积相等,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,当点F是CD的中点时,若AB=4,则BC=_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,反比例函数y=(x>0),过点A(3,4).
(1)求y关于x的函数表达式.
(2)求当y≥2时,自变量x的取值范围.
(3)在x轴上有一点P(1,0),在反比例函数图象上有一个动点Q,以PQ为一边作一个正方形PQRS,当正方形PQRS有两个顶点在坐标轴上时,画出状态图并求出相应S点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李叔叔在“中央山水”买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面(由四个长方形组成)如图所示(图中长度单位:米),请解答下问题:
(1)用式子表示这所住宅的总面积;
(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com