精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,∠ABC90°ABBCD在边 AC上,AEBD E

(1)如图1,作 CFBDF,求证:CFAEEF

(2)如图2,若 BCCD,求的值

(3)如图3,作 BMBE,且 BMBEAE2EN4,连 CM BE N,请直接写出BCM的面积为___

【答案】1)详见解析;(2;(35

【解析】

1)利用已知条件易证△ABE≌△BCF,所以CFBEAEBF,进而可证明EFCFAE

2)作 CF⊥BD F,根据(1)可知AE=BF,再根据BCCDCF⊥BD得到FBD中点,故可得到=

3)过作 CF⊥BD F,根据(1)得△ABE≌△BCF,根据BM⊥BE,且 BMBE得到△BMN△FCN,故SBCM=SBCF=×BF×FC,即可求解.

1)证明:∵CFBD于点FAEBD

∴∠AEB=∠CFB90°,

∴∠ABE+∠BAE90°,

又∵∠ABC90°,

∴∠ABE+∠CBE90°,

∴∠BAE=∠CBF

在三角形ABEBCF中,

∴△ABE≌△BCFAAS),

CFBEAEBF

EFCFAE

2)如图,作 CF⊥BD F,根据(1)可知AE=BF

BCCDCF⊥BD

FBD中点,

DF=BF=AE

=

3)过作CF⊥BD F

由(1)得△ABE≌△BCF

BM⊥BE,且BMBE

∴BMFC

∠MNB=CNF

△BMN△FCN

SBMN=SFCNBN=FN

AE2EN4

BF= AE2,BN=BF=1,

BE=BN+EN=5

SBCM=SBCF=×BF×FC=×2×BE==5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图,图象过点(﹣10),对称轴为直线,下列结论:①④当时, 的增大而增大.其中正确的结论有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=ACAB的垂直平分线MNAC于点D,交AB于点E

1)求证:△ABD是等腰三角形;

2)若∠A=40°,求∠DBC的度数;

3)若AE=6△CBD的周长为20,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格中的每个小方格都是边长为1的正方形,我们把以格点间的连线为边的三角形称为格点三角形,图中的ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1-1).

(1)ABC向左平移8格后得到A1B1C1,画出A1B1C1的图形并写出点B1的坐标;

(2)ABC绕点C按顺时针旋转90°后得A2B2C2,画出A2B2C2的图形并写出B2的坐标;

(3)ABC以点A为位似中心放大,使放大前后对应边的比为12,画出AB3C3的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBC,PAB的平分线与CBA的平分线相交于E,CE的连线交AP于D.

求证:AD+BC=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线与抛物线关于y轴对称, 抛物线与x轴分别交于点A(-3, 0), B(m, 0), 顶点为M.

(1)求b和m的值;

(2)求抛物线的解析式;

(3)在x轴, y轴上分别有点P(t, 0), Q(0, -2t), 其中t>0, 当线段PQ与抛物线有且只有一个公共点时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,∠BAC=90°AB=AC.MN是过点A的直线,BDMN DCEMNE.

1)求证:BD=AE.

2)若将MN绕点A旋转,使MNBC相交于点G(如图2),其他条件不变,求证:BD=AE.

3)在(2)的情况下,若CE的延长线过AB的中点F(如图3),连接GF,求证:∠AFE=BFG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.

(1)当x=2时,求⊙P的半径;

(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象

(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到   的距离等于到   的距离的所有点的集合.

(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cosAPD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为营造安全出行的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CDAM交于点C,横杆DEAB,摄像头EFDE于点E,AC=55,CD=3,EF=0.4,CDE=162°。

(1)求∠MCD的度数;

(2)求摄像头下端点F到地面AB的距离。(精确到百分位)

(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

同步练习册答案