科目:初中数学 来源: 题型:
赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。如图10,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R= 米.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图13,已知Rt△ACB中,∠C=90°,∠BAC=45°.
![]()
(1)(4分)用尺规作图,:在CA的延长线上截取AD=AB,并连接BD(不写作法,保留作图痕迹)
(2)(4分)求∠BDC的度数.
(3)(4分)定义:在直角三角形中,一个锐角A的邻边与对边的比叫做∠A的余切,记作cotA,即
,根据定义,利用图形求cot22.5°的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是( )
![]()
|
| A. | ∠A=∠D | B. |
| C. | ∠ACB=90° | D. | ∠COB=3∠D |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是 米(平面镜的厚度忽略不计).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com