精英家教网 > 初中数学 > 题目详情

【题目】如图,半圆O的直径AC=2,点B为半圆的中点,点D在弦AB上,连结CD,作BF⊥CD于点E,交AC于点F,连结DF,当△BCE和△DEF相似时,BD的长为_____

【答案】

【解析】

分两种情形讨论:①当∠DFE=∠BCE时,可以证明DB=DC,BC=CF,∠DFC=∠DBC=90°即可解决问题.②当∠FDE=∠BCE时,可以证明DF∥BC、△BDF∽△CBD得到 列出方程解决问题.

解:

①如图1,当∠DFE=∠BCE时,
∵∠DEF=∠BEC,
∴△DEF∽△BEC,
∵AC是直径,
∴∠ABC=90°,
∵BF⊥CD,
∴∠CEB=90°,
∴∠BCE+∠CBE=90°,∠DBE+∠EBC=90°,
∴∠DBE=∠BCE=∠DFE,
∴DB=DF,
∵DE⊥BF,
∴EB=EF,
∴BC=CF,
∵点B为半圆的中点,
∴AB=BC,
∴∠A=45°,
∵∠DBF=∠DFB,∠CBF=∠CFB,∠DBF+∠CBF=90°,
∴∠DFB+∠CFB=90°,
∴∠DFC=∠DFA=90°,
∴∠A=∠ADF=45°,
∴AF=DF=BD,
RT△ABC中,∵AC=2
∴AB=BC=AC=2,
∴FC=2,
∴BD=AF=AC-FC=2-2,
②如图2,

当∠FDE=∠BCE时,
∵∠DEF=∠BEC,
∴△DEF∽△CEB,DF∥BC,
∴∠ADF=∠ABC=90°,
∵∠ABC=∠BEC=90°,
∴∠BCE+∠CBE=90°,∠DBE+∠EBC=90°,
∴∠DBE=∠BCE=∠FDE,
∵∠BDF=∠DBC=90°,∠DBF=∠BCD,
∴△BDF∽△CBD,

∵∠A=45°,∠ADF=90°,
∴∠AFD=∠A=45°,
∴AD=DF,
BD=x,由(1)可知:AB=BC=2,AD=DF=2-x,
,整理得:x2+2x-4=0,
解得:x= -1+ (或-1-舍弃)
∴BD=-1.
故答案为2-2-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1是一座立交桥的示意图(道路宽度忽略不计), A为入口, FG为出口,其中直行道为ABCGEF,且AB=CG=EF ;弯道为以点O为圆心的一段弧,且弧BC弧ED弧CD所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出. 其间两车到点O的距离ym)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是( )

A. 甲车在立交桥上共行驶8s B. F口出比从G口出多行驶40m

C. 甲车从F口出,乙车从G口出 D. 立交桥总长为150m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为

(1)求线段AP的长;

(2)DE⊙O的切线,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知ABCDCAB上一动点,ABCD

1)在图1中,将BD绕点B逆时针方向旋转90°BE,若连接DE,则△DBE为等腰直角三角形;若连接AE,试判断AEBC的数量和位置关系并证明;

2)如图2FCD延长线上一点,且DFBC,直线AFBD相交于点G,∠AGB的度数是一个固定值吗?若是,请求出它的度数;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A为函数 图象上一点,连结OA,交函数 的图象于点B,点Cx轴上一点,且AO=AC,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场开展购物抽奖活动,抽奖箱中有3个形状、大小和质地等完全相同的小球,分别标有数字1、2、3.顾客从中随机摸出一个小球,然后放回箱中,再随机摸出一个小球.

(1)利用树形图法或列表法(只选其中一种),表示摸出小球可能出现的所有结果;

(2)若规定:两次摸出的小球的数字之积为9,则为一等奖;数字之积为6,则为二等奖;数字之积为24,则为三等奖.请你分别求出顾客抽中一等奖、二等奖、三等奖的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知以AB为直径的圆中,∠ACB=∠ABD=90°,∠D=60°,∠ABC=45°.

(1)求证:EC平分∠AEB;

(2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,五边形是学校的一块种植基地示意图,这块基地可以分成正方形,已知这个五边形的周长为88米,正方形的面积为400平方米.

1)求正方形的周长;

2)求点边的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为庆祝重庆南开中学建校83周年暨校运动会,我校初二(21)班准备统一穿初一时期订制的服装参加运动会,分别需要增订“英伦学院风”班服(250/件)、“”运动裤(90/件)、“少年的我”短袖恤(40/件)共50件(三种服装均有增订),总花费6000元,且需要增订“少年的我”短袖恤的件数最多,则需要增订“”运动裤__________件.

查看答案和解析>>

同步练习册答案