【题目】如图,CD=4,∠C=90°,点B在线段CD上,,沿AB所在的直线折叠△ACB得到△AC′B,若△DC′B是以BC'为腰的等腰三角形,则线段CB的长为_____.
【答案】2或
【解析】
分BC′=BD,BC′=C′D两种情形分别求解即可.
BC′=BD时,由折叠可知BC′=BC=BD=2;
BC′=C′D时,作C′H⊥BD于H,CM⊥AB于M,取AB的中点N,连接CN,设BC=3k,AC=4k,AB=5k.根据直角三角形ABC的面积和直角三角形斜边上的中线得CM=k,CN=k,根据勾股定理求出MN,再证明△CMN∽△C′HB,由相似三角形的对应边成比例求出k的值,即可得出结论.
解:当BC′=BD时,BC=BD=2.
当BC′=C′D时,作C′H⊥BD于H,CM⊥AB于M,取AB的中点N,连接CN.
设BC=3k,AC=4k,AB=5k.则CM=k,CN=k,
∴MN= =k,
∵∠DBC′+∠CBC′=180°,∠CAC′+∠CBC′=180°,
∴∠C′BH=∠CAC′,
∵NC=NA=BN,
∴∠NAC=∠NCA,
∴∠CNM=∠NAC+∠NCA=2∠NAC=∠CAC′,
∴∠C′BH=∠CNM,
∵∠CMN=∠BHC′=90°,
∴△CMN∽△C′HB,
∴= ,
∴ = ,
解得k= ,
∴BC=,
综上所述,BC的长为2或.
故答案为:2或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=10,求AE的长;
(3)若△CDE的面积是△OBF面积的,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 某网店销售一种产品.这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/件市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示:
(1)当12≤x≤18时,求y与x之间的函数关系式;
(2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式并求出每件销售价为多少元时.每天的销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=﹣x+m(m为常数)的图象与x轴交于A(﹣3,0),与y轴交于点C.以直线x=﹣1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.
(1)求一次函数及抛物线的函数表达式;
(2)P为线段AC上的一个动点(点P与C、A不重合)过P作x轴的垂线与这个二次函数的图象交于点D,连接CD,AD,点P的横坐标为n,当n为多少时,△CDA的面积最大,最大面积为多少?
(3)在对称轴上是否存在一点E,使∠ACB=∠AEB?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,AB=5cm,AC=4cm,线段AC上有一动点E,连接BE,ED,∠BED=∠A=60°,设A,E两点间的距离为xcm,C,D两点间的距离为ycm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.
(1)列表:如表的已知数据是根据A,E两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.3 | 2.5 |
y/cm | 0 | 0.39 | 0.75 | 1.07 | 1.33 | 1.45 |
|
x/cm | 2.8 | 3.2 | 3.5 | 3.6 | 3.8 | 3.9 | |
y/cm | 1.53 | 1.42 | 1.17 | 1.03 | 0.63 | 0.35 |
请你补全表格;
(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;
(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: ;
(4)解决问题:当AE=2CD时,CD的长度大约是 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,点是内一个动点,且满足,当线段取最小值时,记,线段上一动点绕着点顺时针旋转得到点,且满足 ,则的最小值为 _____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,橫、纵坐标都是整数的点叫做整点.直线y=ax与抛物线y=ax2﹣2ax﹣1(a≠0)围成的封闭区域(不包含边界)为W.
(1)求抛物线顶点坐标(用含a的式子表示);
(2)当a=时,写出区域W内的所有整点坐标;
(3)若区域W内有3个整点,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com