【题目】如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°
(1)试说明BC∥EF;
(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.
科目:初中数学 来源: 题型:
【题目】鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:
鞋长 | 16 | 19 | 24 | 27 |
鞋码 | 22 | 28 | 38 | 44 |
(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数;
(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;
(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.
(1)求甲第一个出场的概率;
(2)求甲比乙先出场的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12 m,由此他就知道了A,B间的距离,有关他这次探究活动的描述错误的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
【答案】D
【解析】试题分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN∥AB,MN=AB,再根据相似三角形的判定解答.
试题解析:∵M、N分别是AC,BC的中点
∴MN∥AB,MN=AB,
∴AB=2MN=2×12=24m
△CMN∽△CAB
∵M是AC的中点
∴CM=MA
∴CM:MA=1:1
故描述错误的是D选项.
故选D.
考点:1.三角形中位线定理;2.相似三角形的应用.
【题型】单选题
【结束】
10
【题目】若关于的一元二次方程+x-3m=0有两个不相等的实数根,则的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为促进学生多样化发展,某校组织了课后服务活动,设置了体育类、艺术类,文学类及其它类社团(要求人人参与,每人只能选择一类)为了解学生喜爱哪类社团活动,学校做了一次抽样调查,根据收集到的数据,绘制成如下两幅不完整的条形统计图和扇形统计图(如图①、图②)如下,请根据国中所给的信息,解答下列问题:
(1)此次共调查了多少人?
(2)求艺术类在扇形统计图中所占的四心角的度数;
(3)将条形统计图补充完整;
(4)如果该校有学生2200人,那么在全校学生中,喜受文学类和其它类两个社团的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁内角互补,两直线平行)
∴∠BAE= (两直线平行,内错角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (内错角相等,两直线平行)
∴∠M=∠N(两直线平行,内错角相等)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?
小敏在思考问题时,有如下思路:连接AC.
结合小敏的思路作答:
(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题;
(2)如图2,在(1)的条件下,若连接AC,BD.
①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;
②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
某校抽查的学生文章阅读的篇数统计表
文章阅读的篇数(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人数(人) | 20 | 28 | m | 16 | 12 |
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知 a,b,c 分别是△ABC 的三边长.
(1)分解因式:①ac﹣bc= ,②﹣a2+2ab﹣b2= ;
(2)若 ac﹣bc=﹣a2+2ab﹣b2,试判断△ABC 的形状;并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com