【题目】为促进学生多样化发展,某校组织了课后服务活动,设置了体育类、艺术类,文学类及其它类社团(要求人人参与,每人只能选择一类)为了解学生喜爱哪类社团活动,学校做了一次抽样调查,根据收集到的数据,绘制成如下两幅不完整的条形统计图和扇形统计图(如图①、图②)如下,请根据国中所给的信息,解答下列问题:
(1)此次共调查了多少人?
(2)求艺术类在扇形统计图中所占的四心角的度数;
(3)将条形统计图补充完整;
(4)如果该校有学生2200人,那么在全校学生中,喜受文学类和其它类两个社团的学生共有多少人?
【答案】(1)200人;(2)72°;(3)见解析;(4)880人.
【解析】
(1)根据体育类学生人数和所占的百分比,可以求得本次调查的总人数;
(2)根据条形图中的数据可以求得艺术类所占的百分比,再乘以360°即可;
(3)根据(1)中的结果和统计图中的数据可以求得文学类和其它类的学生数,从而可以将条形统计图补充完整;
(4)先求出样本中喜受文学类和其它类两个社团的学生所占的百分比,再利用样本估计总体的思想,用样本百分比乘以2200即可.
解:(1)80÷40%=200(人),
即此次共调查了200人;
(2)360°×=72°,
即艺术类在扇形统计图中所占的圆心角的度数是72°;
(3)选择文学类的学生有:200×30%=60(人),
选择其他类的学生有:200﹣80﹣40﹣60=20(人),
补全的条形统计图如右图所示;
(4)2200×=880(人),
答:在全校学生中,喜受文学类和其它类两个社团的学生共有880人.
科目:初中数学 来源: 题型:
【题目】在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题
(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;
(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某庄有甲、乙两家草莓采摘园的草莓销售价格相同,春节期间,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为(千克),在甲园所需总费用为
(元),在乙园所需总费用为
(元),
、
与
之间的函数关系如图所示.
(1)甲采摘园的门票是_____元,两个采摘园优惠前的草莓单价是每千克____元;
(2)当时,求
与
的函数表达式;
(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°
(1)试说明BC∥EF;
(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在将式子(m>0)化简时,
小明的方法是:=
=
=
;
小亮的方法是: ;
小丽的方法是:.
则下列说法正确的是( )
A. 小明、小亮的方法正确,小丽的方法不正确
B. 小明、小丽的方法正确,小亮的方法不正确
C. 小明、小亮、小丽的方法都正确
D. 小明、小丽、小亮的方法都不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发沿AB向点B移动(不与点A、B重合),一直到达点B为止;同时,点Q从点C出发沿CD向点D移动(不与点C、D重合).运动时间设为t秒.
(1)若点P、Q均以3cm/s的速度移动,则:AP= cm;QC= cm.(用含t的代数式表示)
(2)若点P为3cm/s的速度移动,点Q以2cm/s的速度移动,经过多长时间PD=PQ,使△DPQ为等腰三角形?
(3)若点P、Q均以3cm/s的速度移动,经过多长时间,四边形BPDQ为菱形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线.下列结论中,正确的是( )
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com