【题目】如图,己如FG⊥AB,、CD⊥AB,垂足分别为G、D,∠1=∠2.
求证:∠CED+∠ACB=180°请将下面的证明过程补充完整.
证明:∵FG⊥AB,CD⊥AB(已知),
∴∠FGB=∠CDB=90°(垂直的定义)
∴GF∥CD(___________________________)
∵GF∥CD(已证)
∴∠2=∠BCD(___________________________)
又∵∠1=∠2(已知),
∴∠1=∠BCD(___________________________)
∴___________________________,(___________________________)
∴∠CED+∠ACB=180°(___________________________)
【答案】同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DE∥BC,内错角相等,两直线平行,两直线平行,同旁内角互补.
【解析】
根据同位角相等两直线平行证得GF∥CD,然后根据两直线平行同位角相等得出∠2=∠BCD,根据已知进一步得出∠1=∠BCD,即可证得DE∥BC,得出∠CED+∠ACB=180°.
证明:∵FG⊥AB,CD⊥AB(已知),
∴∠FGB=∠CDB=90°(垂直的定义)
∴GF∥CD(同位角相等,两直线平行)
∵GF∥CD(已证)
∴∠2=∠BCD(两直线平行,同位角相等)
又∵∠1=∠2(已知),
∴∠1=∠BCD(等量代换)
∴DE∥BC( 内错角相等,两直线平行 )
∴∠CED+∠ACB=180°(两直线平行,同旁内角互补)
故答案为:同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DE∥BC,内错角相等,两直线平行,两直线平行,同旁内角互补.
科目:初中数学 来源: 题型:
【题目】将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.
根据题意,将下面的表格补充完整:
白纸张数张 | 1 | 2 | 3 | 4 | 5 | |
纸条长度 | 20 | ______ | 54 | 71 | ______ |
直接写出用x表示y的关系式:______ ;
要使粘合后的总长度为1006cm,需用多少张这样的白纸?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙半径为, 是⊙的直径, 是⊙上一点,连接,⊙外的一点 在直线上.
()若, .
①求证: 是⊙的切线.
②阴影部分的面积是__________.(结果保留)
()当点在⊙上运动时,若是⊙的切线,探究与的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图7,推理填空:
(1)∵∠A =∠_____(已知),
∴AC∥ED(____________________________________);
(2)∵∠2 =∠_____(已知),
∴AC∥ED(_________________________________________);
(3)∵∠A +∠____ = 180°(已知),
∴AB∥FD(_________________________________________);
(4)∵AC∥ED(已知),
∴∠2 +∠____ = 180°(_________________________________________);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.
(1)根据题意,将下面的表格补充完整.
白纸张数x(张) | 1 | 2 | 3 | 4 | 5 | … |
纸条总长度y(cm) | 20 | 54 | 71 | … |
(2)直接写出y与x的关系式.
(3)要使粘合后的长方形总面积为1656cm2,则需用多少张这样的白纸?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com