精英家教网 > 初中数学 > 题目详情

【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°△DBE后,再把△ABC沿射线平移至△FEGDEFG相交于点H

1)判断线段DEFG的位置关系,并说明理由;

2)连结CG,求证:四边形CBEG是正方形.

【答案】见解析

【解析】试题分析: (1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.

试题解析:

(1)解:FGED.理由如下:

∵△ABC绕点B顺时针旋转90°至DBE后,∴∠DEB=∠ACB

∵把ABC沿射线平移至FEG,∴∠GFE=∠A,∵∠ABC=90°,

∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FGED

(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CGEBCB=BE

CGEB,∴∠BCG=∠CBE=90°,∴四边形BCGE是矩形,∵CB=BE

∴四边形CBEG是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,FBD上,BE=DF.

(1)求证:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形的周长为,两个邻角的比是,则这个菱形的面积是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,己如FGAB,、CDAB,垂足分别为GD,∠1=∠2

求证:∠CED+∠ACB180°请将下面的证明过程补充完整.

证明:∵FGABCDAB(已知),

∴∠FGB=∠CDB90°(垂直的定义)

GFCD(___________________________)

GFCD(已证)

∴∠2=∠BCD(___________________________)

又∵∠1=∠2(已知)

∴∠1=∠BCD(___________________________)

___________________________,(___________________________)

∴∠CED+∠ACB180°___________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;

(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单 位:s)(0<t<)。

(1)如图1,连接DQ平分∠BDC时,t的值为      

(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;

(3)请你继续进行探究,并解答下列问题:

①证明:在运动过程中,点O始终在QM所在直线的左侧;

②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F过点E作EGBC,交AB于G,则图中相似三角形有(

A4对 B5对 C6对 D7对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片中,,折叠纸片使点落在边上的处,折痕为.过点,连接.

1)求证:四边形为菱形;

2)当点边上移动时,折痕的端点也随之移动.

①当点与点重合时(如图),求菱形的边长;

②若限定分别在边上移动,求出点在边上移动的最大距离.

查看答案和解析>>

同步练习册答案