精英家教网 > 初中数学 > 题目详情

【题目】如图,已知平行四边形ABCD,延长ADE,使DE=AD,连接BEDC交于O点.

(1)求证:△BOC≌△EOD;

(2)当△ABE满足什么条件时,四边形BCED是菱形?证明你的结论.

【答案】(1)证明见解析;(2)当∠ABE=90°时,BE⊥CD,四边形BCED是菱形,证明见解析.

【解析】

试题(1)根据平行四边形性质得出AD=BC,AD∥BC,推出∠EDO=∠BCO,∠DEO=∠CBO,求出DE=BC,根据ASA推出两三角形全等即可;

(2)由已知可得四边形BCED是平行四边形,只需证明DC⊥BE即可证明四边形BCDE要菱形,通过已知可得OD∥AB,从而得∠EOD=∠ABE,由此可知当∠ABE=90°时,BE⊥CD,四边形BCED是菱形.

试题解析:(1)∵在平行四边形ABCD中,

AD=BC,AD∥BC,

∴∠EDO=∠BCO,∠DEO=∠CBO,

∵DE=AD,

∴DE=BC,

△BOC△EOD

∴△BOC≌△EOD(ASA);

(2)结论:当∠ABE=90°时,BE⊥CD,四边形BCED是菱形

∵DE=BC,DE∥BC,

四边形BCED是平行四边形,

∴EO=OB,

∵DE=AD,

∴OD∥AB,

∴∠EOD=∠ABE,

∠ABE=90°时,BE⊥CD,四边形BCED是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠. 各商场的优惠条件如下:

甲商场优惠条件:第一台按原价收费,其余的每台优惠

乙商场优惠条件:每台优惠.

设公司购买台电脑,选择甲商场时, 所需费用为元,选择乙商场时,所需费用为元,请分别求出之间的关系式.

什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?

现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,且,连接,点的中点,连接,则_____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD为矩形的四个顶点AB=16cmAD=6cm动点PQ分别从点AC同时出发P3cm/s的速度向点B移动一直到达B为止Q2 cm/s的速度向D移动

(1)PQ两点从出发开始到几秒?四边形PBCQ的面积为33cm2

(2)PQ两点从出发开始到几秒时?点P和点Q的距离是10cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点PB出发沿BCC运动,速度为10单位/秒.动点QC出发沿CAA运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′PP′Q,设运动时间为t秒.

(1)若当t的值为m时,PP′恰好经过点A,求m的值;

(2)设△P′PQ的面积为y,求yt之间的函数关系式(m<t≤4) ;

(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届汉字听写大赛,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:

组别

成绩x(分

频数(人数

频率

50≤x<60

2

0.04

60≤x<70

10

0.2

70≤x<80

14

b

80≤x<90

a

0.32

90≤x<100

8

0.16

请根据表格提供的信息,解答以下问题:

(1)直接写出表中a=________,b=________;

(2)请补全右面相应的频数分布直方图;

(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.

(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,D是边AC的中点,连接BDECBC于点CCEBD.求证:△ADE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x+分别与x轴、y轴交于B、C两点,点A在x轴上,ACB=90°,抛物线=ax2+bx+经过A、B两点.

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)点M是直线BC上方抛物线上的一点,过点M从作MHBC于点H,作轴MDy轴交BC于点D,求DMH周长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD的边长为3,∠BAD=60°.

(1)连接AC过点DDEAB于点EDFBCAC于点FDEDF于点MN

依题意补全图1;

MN的长

(2)如图2,(1)中∠EDF以点D为中心顺时针旋转45°,其两边DE′、DF分别与直线ABBC相交于点QP连接QP请写出求DPQ的面积的思路.可以不写出计算结果

查看答案和解析>>

同步练习册答案