精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线;

(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;

(3)求证:CD=HF.

【答案】详见解析.

【解析】

(1)连接OE,由于BE是角平分线,则有∠CBE=OBE;而OB=OE,就有∠OBE=OEB,等量代换有∠OEB=CBE,那么利用内错角相等,两直线平行,可得OEBC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;

(2)C=BHE=90°,EBC=EBA,BEC=BEH,根据BF是⊙O是直径,

得到∠BEF=90°,FEH+BEH=90°,AEF+BEC=90°,得到∠FEH=FEA,

即可证明FE平分∠AEH.
(3)连结DE,先根据AAS证明CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.

(1)证明:(1)如图,连接OE.

BEEF,∴∠BEF=90°,

BF是圆O的直径,

OB=OE,

∴∠OBE=OEB,

BE平分∠ABC,

∴∠CBE=OBE,

∴∠OEB=CBE,

OEBC,

∴∠AEO=C=90°,

AC是⊙O的切线;

(2)证明:∵∠C=BHE=90°,EBC=EBA,

∴∠BEC=BEH,

BF是⊙O是直径,

∴∠BEF=90°,

∴∠FEH+BEH=90°,AEF+BEC=90°,

∴∠FEH=FEA,

FE平分∠AEH.

(3)证明:如图,连结DE.

BE是∠ABC的平分线,ECBCC,EHABH,

EC=EH.

∵∠CDE+BDE=180°,HFE+BDE=180°,

∴∠CDE=HFE,

∵∠C=EHF=90°,

∴△CDE≌△HFE(AAS),

CD=HF,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角ACB中,∠ACB=90°O是斜边AB的中点,点DE分别在直角边ACBC上,且∠DOE=90°DEOC于点P,则下列结论

(1) AOD≌△COE(2) OE=OD(3) EOP∽△CDP.

其中正确的结论是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为20cm,∠ABC120°.动点PQ同时从点A出发,其中P4cm/s的速度,沿ABC的路线向点C运动;Q2cm/s的速度,沿AC的路线向点C运动.当PQ到达终点C时,整个运动随之结束,设运动时间为t秒.

1)在点PQ运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;

2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N

①当t为何值时,点PMN在一直线上?

②当点PMN不在一直线上时,是否存在这样的t,使得PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:①2a+b0;abc0;b2﹣4ac0;a+b+c0;(a﹣2b+c)0,其中正确的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个模型的三视图如图所示(单位:m)

(1)请描述这个模型的形状;

(2)若制作这个模型的木料密度为360 kg/m3,则这个模型的质量是多少?

(3)如果用油漆漆这个模型,每千克油漆可以漆4 m2,那么需要多少千克油漆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,这一种方法称为配方法,利用配方法请解以下各题:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:当a取不同的实数时在得到的代数式a24a的值中是否存在最小值?请说明理由.

(3)应用:如图.已知线段AB6MAB上的一个动点,设AMx,以AM为一边作正方形AMND,再以MBMN为一组邻边作长方形MBCN.问:当点MAB上运动时,长方形MBCN的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在现今互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了,有一种用因式分解法产生的密码、方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,,此时可以得到数字密码171920.

(1)根据上述方法,,对于多项式分解因式后可以形成哪些数字密码?(写出三个)

(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为xy,求出一个由多项式分解因式后得到的密码(只需一个即可);

(3)若多项式因式分解后,利用本题的方法,时可以得到其中一个密码为242834,mn的值.

查看答案和解析>>

同步练习册答案