精英家教网 > 初中数学 > 题目详情

【题目】如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.已知DFFA12

1)求证:△APB≌△APD

2)当线段DP的长为6时,求线段FG的长;

3)请直接写出的比值.

【答案】1)详见解析;(2)线段FG的长为5;(3

【解析】

1)由菱形的性质知∠BAP=∠DAPABAD,再结合APAP即可证得△APB≌△APD

2)首先证明△AFP∽△CBP,得出,由,根据PBPDPFPD,结合DP6可得FB10,再证△DFG∽△AFB,从而得出答案;

3)由△APF∽△CBP,且=(2,由SABCSADCSABPSADPSPBCSPDC,即可得出答案.

解:(1)由菱形的性质知∠BAP=∠DAPABAD

在△APB和△APD中,

∴△APB≌△APDSAS);

2)∵四边形ABCD是菱形,

ADBCADBC

∴△AFP∽△CBP

由(1)知PBPD

PFPD

DP6时,PF×64

FBFP+PB4+610

DGAB

∴△DFG∽△AFB

FG×105

3)由(2)知△APF∽△CBP,且

=(2

又∵SABCSADCSABPSADP

SPBCSPDC

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点是反比例函数的图像上的一个动点,经过点的直线轴负半轴于点,交轴正半轴于点.过点轴的垂线,交反比例函数的图像于点.过点轴于点,交于点,连接.设点的横坐标是.

(1),求点的坐标(用含的代数式表示);

(2),当四边形是平行四边形时,求的值,并求出此时直线对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCDEBC,垂足为点E,连接ACDE于点F,点GAF的中点,∠ACD=2ACB.若DG=3EC=1,则DE的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图O是等边ABC内一点AOB=110°BOCBOC绕点C按顺时针方向旋转60°ADC连接OD

1)求证COD是等边三角形

2)当α=150°试判断AOD的形状并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合),且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.

(1)求证:△APQ≌△QCE;

(2)求∠QAE的度数;

(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣11),点Bx轴正半轴上,点D在第三象限的双曲线y上,过点CCEx轴交双曲线于点E,则CE的长为(  )

A. 2.5B. 3C. 3.5D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的边OAx轴重合,B的坐标为(﹣1,2),将矩形OABC绕平面内一点P顺时针旋转90°,使A、C两点恰好落在反比例函数 的图象上,则旋转中心P点的坐标是(  )

A. ,﹣ B. ,﹣ C. ,﹣ D. ,﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料:

问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.

解:设所求方程的根为y,则y=2x,所以x=.

x=代入已知方程,得-1=0.

化简,得y2+2y-4=0.

故所求方程为y2+2y-4=0.

这种利用方程根的代换求新方程的方法,我们称为换根法”.

请用阅读材料提供的换根法求新方程(要求:把所求方程化为一般形式):

(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为_________;

(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(EF最长可利用28),围成一个矩形花园ABCD.与墙平行的一边BC上要预留2米宽的入口(如图中MN所示,不用砌墙)60米长的墙的材料,当矩形的长BC为多少米时,矩形花园的面积为300平方米;能否围成480平方米的矩形花园?

查看答案和解析>>

同步练习册答案