精英家教网 > 初中数学 > 题目详情

【题目】如图,O为直线AB上一点,∠AOC50°OD平分∠AOC,∠DOE90°.

(1)请你数一数,图中有多少个小于平角的角;

(2)求出∠BOD的度数;

(3)请通过计算说明OE是否平分∠BOC.

【答案】19;(2155°;(3OE平分∠BOC,见解析

【解析】

1)根据角的定义即可解决;
2)根据∠BOD=DOC+BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;
3)根据∠COE=DOE-DOC和∠BOE=BOD-DOE分别求得∠COE与∠BOE的度数即可说明.

解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.共9个角.

2)∵∠AOC=50°OD平分∠AOC
∴∠DOC= AOC=25°,∠BOC=180°-AOC=130°
∴∠BOD=DOC+BOC=155°

3)∵∠DOE=90°,∠DOC=25°
∴∠COE=DOE-DOC=90°-25°=65°
又∵∠BOE=BOD-DOE=155°-90°=65°
∴∠COE=BOE

OE平分∠BOC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC的三个顶点坐标分别为:A(11)B(32)C(14)

(1)ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的A1B1C1.若将A1B1C1看成是ABC经过一次平移得到的,则平移距离是________

(2)以原点为对称中心,画出与ABC成中心对称的A2B2C2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法综宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法,书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,则小和尚有__________人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.

(1)求抛物线的表达式;

(2)当P位于y轴右边的抛物线上运动时,过点C作CF直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问PBC的面积S能否取得最大值?若能,请出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的中线,AEBCBEAD于点F,且AF=DF.

(1)求证:AFEODFB

(2)求证:四边形ADCE是平行四边形;

(3)ABAC之间满足什么条件时,四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在AOB中,∠ABO=90°OB=4AB=8,直线y=-x+b分别交OAAB于点CD,且ΔBOD的面积是4.

(1)求直线AO的解析式;

(2)求直线CD的解析式;

(3)若点Mx轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)

(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.如:如图,数轴上点A表示的数为﹣2,点B表示的数为8,则A、两点间的距离AB=|﹣2﹣8|=10,线段AB的中点C表示的数为=3,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).

(1)用含t的代数式表示:t秒后,点P表示的数为   ,点Q表示的数为   

(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB;

(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知P12).

1)在平面直角坐标系中描出点P(保留画图痕迹);

2)如果将点P向左平移3个单位长度,再向上平移1个单位长度得到点P',则点P'的坐标为 

3)点A在坐标轴上,若SOAP2,直接写出满足条件的点A的坐标.

查看答案和解析>>

同步练习册答案