【题目】光明农场准备修建一个矩形苗圃园,苗圃一边靠墙,其他三边用长为48米的篱笆围成.已知墙长为米.设苗圃园垂直于墙的一边长为米.
(1)求当为多少米时,苗圃园面积为280平方米;
(2)若=22米,当取何值时,苗圃园的面积最大,并求最大面积.
【答案】(1)10米或14米;(2)当x=13米时,苗圃园的最大值为286平方米.
【解析】
(1)根据题意可以找出面积与的关系式,代入求值即可;
(2)根据题意和a的值,可以求得x的取值范围,然后根据(1)中的函数关系式即可解答本题.
(1)解:设面积为y,
由题意可得,
解:(1)由题意可得,
y=x(48-2x)=-2x2+48x,
即y与x的函数关系式是y=-2x2+48x,
当y=280时,
280=-2x2+30x
解得x=10或14
所以当为10米或14米时,苗圃园的面积为280平方米
(2)∵a=22,
∴0<48-2x≤22,
解得,13≤x<24,
∵y=-2x2+48x=-2(x-12)2+288
当x=13米时,y=-2×(13-12)2+288=286平方米
综上所述,当x=13米时,苗圃园的最大值为286平方米.
科目:初中数学 来源: 题型:
【题目】如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG、DE相交于点O,再连接AO、BE、DG.王凯同学在探究该图形的变化时,提出了四个结论:
①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中结论正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市有甲、乙两种商品,若买1件甲商品和2件乙商品,共需80元;若买2件甲商品和3件乙商品,共需135元.
(1)求甲、乙两种商品每件售价分别是多少元;
(2)甲商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该超市每天销售甲商品100件;若销售单价每上涨1元,甲商品每天的销售量就减少5件.写出甲商品每天的销售利润y(元)与销售单价(x)元之间的函数关系,并求每件售价为多少元时,甲商品每天的销售利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在所给网格图(每小格均为边长△ABC是1的正方形)中完成下列各题:
(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;
(2)画出格点△ABC(顶点均在格点上)绕点A顺时针旋转90度的△A2B2C2;
(3)在DE上画出点M,使MA+MC最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.若点C是线段AB的黄金分割点,AB=2,则AC=
B.平面内,经过矩形对角线交点的直线,一定能平分它的面积
C.两个正六边形一定位似
D.菱形的两条对角线互相垂直且相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小飞设计的“过圆外一点作圆的切线”的尺规作图过程.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
作法:如图,
①连接OP,作线段OP的垂直平分线交OP于点A;
②以点A为圆心,OA的长为半径作圆,交⊙O于B,C两点;
③作直线PB,PC.所以直线PB,PC就是所求作的切线.
根据小飞设计的尺规作图过程,
(1)使用直尺和圆规补全图形(保留作图痕迹);
(2)完成下面的证明(说明:括号里填写推理的依据).
证明:连接,,
∵为⊙的直径,
∴ ( ).
∴,.
∴,为⊙的切线( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点和.
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿轴翻折,得到图象N.如果过点和的直线与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有( )
①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为,,点M是AO中点,的半径为2.
若是直角三角形,则点P的坐标为______直接写出结果
若,则BP与有怎样的位置关系?为什么?
若点E的坐标为,那么上是否存在一点P,使最小,如果存在,求出这个最小值,如果不存在,简要说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com