分析 (1)先根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点,再连结A1B1、A1C1和B1C1即可;
(2)通过构造直角三角形旋转,画出△ABC绕点C逆时针旋转90°后CA的对应线段CA2,CB的对应线段CB2,这样可得到△A2B2C,再利用勾股定理计算出BC,然后根据扇形面积公式计算线段BC旋转过程中扫过的面积.
解答 解:(1)如图1,![]()
(2)如图2,![]()
BC=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,
所以BC扫过的面积S扇形=$\frac{90π×(\sqrt{17})^{2}}{360}$=$\frac{17}{4}$π.
点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积的计算.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com