【题目】如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依次类推,图10中有10个直角三角形的内切圆,它们的面积分别记为,,,…, ,则= .
【答案】π
【解析】(1)如下图1,∵在△ABC中,∠C=90°,AC=3,BC=4,
∴由勾股定理可得:AB=.
设△ABC的内切圆O的半径为,则,
∴S⊙O= .
(2)如下图2,过点C作CD⊥AB于点D,则由S△ABC=AC·BC=AB·CD可得: CD,解得:CD=,
∴在Rt△ACD和Rt△BCD中,由勾股定理可解得:AD=,BD=,
设⊙O1的半径为,⊙O2的半径为 ,则 , ,
∴S⊙O1+S⊙O2= .
(3)如图3,过点D作DE⊥BC于点E,设三个圆的半径分别为 ,则同(2)可知,可解得DE=,CE=,BE=,由此解得, ,
∴S⊙O1+S⊙O2+ S⊙O3= .
(4)综上所述,在图4中,S1+S2+S3+S4= ;
在图10中,S1+S2+S3++S10= .
科目:初中数学 来源: 题型:
【题目】小明家2015年的四个季度的用电量情况如表1,其中各种电器用电量情况如表2.
表1 | 表2 | |||
季度名称 | 用电量/度 | 电器 | 用电量/度 | |
第一季度 | 250 | 空调 | 250 | |
第二季度 | 150 | 冰箱 | 400 | |
第三季度 | 400 | 彩电 | 150 | |
第四季度 | 200 | 其他 | 100 |
小明根据上面的数据制成如图所示的统计图.
根据以上三幅统计图回答下列问题:
(1)从哪幅统计图中可以看出各季度用电量变化情况?
(2)从哪幅统计图中可以看出冰箱的用电量超过总用电量的?
(3)从哪幅统计图中可以清楚地看出空调的用电量?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为 ;
(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.
(1)求直线BC的函数表达式;
(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.
①若∠MBC=90°,求点P的坐标;
②若△PQB的面积为,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在长方体中,为平面直角坐标系的原点,,两点的坐标分别为,,点在第一象限.
(1) 写出点坐标;
(2) 若过点的直线,且把分为:两部分,求出点的坐标;
(3) 在(2)的条件下,求出四边形的面积;
(4) 若点是射线上的点,请直接写出,之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,点D在直线BC上,E在AC上,且AC=CD,DE=AB.
(1)如图②,将△ECD沿CB方向平移,使点E落在AB上,得△E1C1D1,求平移的距离;
(2)如图③,将△ECD绕点C逆时针旋转,使点E落在AB上,得△E2CD2,求旋转角∠DCD2的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,-3),点D与点C关于抛物线的对称轴对称.
(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线对称轴上的一动点,当△PAC的周长最小时,求出点P的坐标;
(3)若点Q在x轴正半轴上,且∠ADQ=∠DAC,求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com