【题目】如图所示,在长方体中,为平面直角坐标系的原点,,两点的坐标分别为,,点在第一象限.
(1) 写出点坐标;
(2) 若过点的直线,且把分为:两部分,求出点的坐标;
(3) 在(2)的条件下,求出四边形的面积;
(4) 若点是射线上的点,请直接写出,之间的数量关系.
【答案】(1) 点B的坐标为(3,5);(2) 点D的坐标为(3,4)或(3,1);(3) 或9;(4) ∠APB=∠CBP+∠OAP或∠APB=∠CBP-∠OAP.
【解析】
(1)根据矩形的性质求出点B的横坐标与纵坐标即可得解;
(2)分AD是4份和1份两种情况讨论求出AD的长,从而得到点D的坐标;
(3)根据梯形的面积公式列式计算即可得解.
(4)分点P在原点上方和在原点下方两种情况求解:连接PB,PA,过点P作PE∥OA,根据平行线的性质可求得结论.
(1)∵A,C两点的坐标分别为(3,0),(0,5),
∴点B的横坐标为3,纵坐标为5,
∴点B的坐标为(3,5);
(2)如图,
若AD为4份,则AD=5×=4,
此时点D的坐标为(3,4),
若AD为1份,则AD=5×=1,
此时点D的坐标为(3,1),
综上所述,点D的坐标为(3,4)或(3,1);
(3)AD=4时,四边形OADC的面积=(4+5)×3=,
AD=1时,四边形OADC的面积=(1+5)×3=9,
综上所述,四边形OADC的面积为或9.
(4)①当点P在原点上方时,连接PB,PA,过点P作PE∥OA,交AB于点E,如图,
∵四边形OABC是矩形,
∴PE∥BC,
∴∠CBP=∠BPE,∠OAP=∠APE,
∵∠BPE+∠APE=∠CBP+∠OAP,即∠APB=∠CBP+∠OAP.
②当点P在原点下方时,连接PB,PA,过点P作PE∥OA,如图,
∵四边形OABC是矩形,
∴PE∥BC,
∴∠CBP=∠BPE,∠OAP=∠APE,
∵∠APB=∠BPE-∠APE,
∴∠APB=∠CBP-∠OAP.
科目:初中数学 来源: 题型:
【题目】如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.
(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得⊿CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△OAB的位置如图所示.将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;…依此类推,第9次旋转得到△OA9B9,则顶点A的对应点A9的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依次类推,图10中有10个直角三角形的内切圆,它们的面积分别记为,,,…, ,则= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,、、均为格点(格点是指每个小正方形的顶点),将向下平移6个单位得到.利用网格点和直尺画图:
(1)在网格中画出;
(2)画出边上的中线,边上的高线;
(3)若的边、分别与的边、垂直,则的度数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校随机抽取部分学生,调查每个月的零花钱消费额,数据整理成如下的统计表和如图①②所示的两幅不完整的统计图,已知图①中A,E两组对应的小长方形的高度之比为2:1请结合相关数据解答以下问题:
(1)本次调查样本的容量是______;
(2)补全频数分布直方图,并标明各组的频数;
(3)若该学校有2500名学生,请估计月消费零花钱不少于300元的学生的数量.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com