分析 由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切,根据已知可求得OC,CD的长,则利用S阴影=S△COD-S扇形OCB求得阴影部分的面积.
解答 解:∵在⊙O中,∠COB=2∠CAB=2×30°=60°,
又∵OB=OC,
∴△OBC是正三角形,
∴∠OCB=60°,
又∵∠BCD=30°,
∴∠OCD=60°+30°=90°,
∴OC⊥CD,
又∵OC是半径,
∴直线CD与⊙O相切,
∴△OCD是Rt△,∠COB=60°,
∵OC=1,
∴CD=$\sqrt{3}$,
∴S△COD=$\frac{1}{2}$OC•CD=$\frac{\sqrt{3}}{2}$,
又∵S扇形OCB=$\frac{π}{6}$,
∴S阴影=S△COD-S扇形OCB=$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$=$\frac{3\sqrt{3}-π}{6}$.
故答案为:$\frac{3\sqrt{3}-π}{6}$.
点评 此题主要考查了对切线的性质及扇形的面积公式,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线,以及扇形的面积计算公式.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 相交 | B. | 相切 | C. | 相离 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -1<b≤3 | B. | 2<b≤3 | C. | 8≤b<9 | D. | 3≤b<4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=-2(x-1)2+3 | B. | y=±2(x+1)2+3 | C. | y=±2(x-1)2+3 | D. | y=-2(x+1)2+3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com