精英家教网 > 初中数学 > 题目详情

【题目】1)解不等式组:

2)因式分解:(x2)(x8+8

3)解方程:+

4)解方程:(2x1236x

【答案】(1)﹣3<x≤2;(2)(x﹣4)(x﹣6);(3) x=﹣5;(4)x=0.5或x=﹣1

【解析】

1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

2)先去括号、合并同类项化简原式,再利用十字相乘法分解可得;

3)根据解分式方程的步骤计算可得;

4)利用因式分解法求解可得.

(1)解不等式3x<5x+6,得:x>﹣3,

解不等式,得:x≤2,

则不等式组的解集为﹣3<x≤2;

(2)原式=x2﹣10x+24

=(x﹣4)(x﹣6);

(3)两边都乘以2(x﹣2),得:1+x﹣2=﹣6,

解得x=﹣5,

检验:x=﹣5时,2(x﹣2)≠0,

∴分式方程的解为x=﹣5;

(4)∵(2x﹣1)2+3(2x﹣1)=0,

∴(2x﹣1)(2x+2)=0,

则2x﹣1=0或2x+2=0,

解得x=0.5或x=﹣1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】矩形ABCD,AB=6,BC=8.P在矩形ABCD的内部,点E在边BC满足PBE∽△DBC,APD是等腰三角形PE的长为数___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的角平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.

(1)求证:DE是⊙O的切线;

(2)若∠CAB=60°,DE=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ ABC中,∠ACB=90°,AD平分BACAD的垂直平分线EFAD于点E,交BC的延长线于点F,交AB于点G,交AC于点H

(1)依题意补全图形;

(2)求证:∠BAD=∠BFG

(3)试猜想ABFBFD之间的数量关系并进行证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)阅读资料:

如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=

我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当O的半径为r时,O的方程可写为:x2+y2=r2

问题拓展:如果圆心坐标为P(a,b),半径为r,那么P的方程可以写为

综合应用:

如图3,P与x轴相切于原点O,P点坐标为(0,6),A是P上一点,连接OA,使tanPOA=,作PDOA,垂足为D,延长PD交x轴于点B,连接AB

证明AB是P的切点;

是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的O的方程;若不存在,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).

请根据图表中的信息,解答下列问题:

(1)写出表中a的值,将频数分布直方图补全;

(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?

(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 1 和图 2 所示的不完整统计图

(1) 被调查员工的人数为  人:

(2) 把条形统计图补充完整;

(3) 若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+c的对称轴是x=﹣1,且过点(,0),有下列结论:abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤abmamb);其中所有错误的结论有(  )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,Rt△中,,点上一点,,过点的垂线交射线于点,延长于点.

(1)求的长;

(2)求的正切值.

查看答案和解析>>

同步练习册答案