精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ ABC中,∠ACB=90°,AD平分BACAD的垂直平分线EFAD于点E,交BC的延长线于点F,交AB于点G,交AC于点H

(1)依题意补全图形;

(2)求证:∠BAD=∠BFG

(3)试猜想ABFBFD之间的数量关系并进行证明

【答案】(1)补图见解析;(2)证明见解析;(3)证明见解析.

【解析】

1)根据题意补全图形;

2)根据角平分线的定义得到∠BAD=CAD.在RtAEHRtCFH中,根据三角形内角和定理得到∠CFH=CAD,等量代换即可得到结论;

3)由线段垂直平分线的性质得到AF=FD,通过证明∠BAF=90°.在RtBAF中,利用勾股定理即可得到结论.

(1)补全图形如图;

(2)AD平分∠BAC,∴∠BAD=CAD

FEAD,∠ACF=90°,∠AHE=CHF,∴∠CFH=CAD,∴∠BAD=CFH,即∠BAD=BFG

(3)猜想:.证明如下:

连接AF

EFAD的垂直平分线,∴AF=FD,∠DAF=ADF,∴∠DAC+CAF=B+BAD

AD是角平分线,∴∠BAD=CAD,∴∠CAF= B,∴∠BAF=BAC+CAF=BAC+B=90°,∴,∴

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)如图1,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DFBE.求证:CECF

2)如图2,在正方形ABCD中,EAB上一点,GAD上一点,如果∠GCE45°,请你利用(1)的结论证明:GEBEGD

3)运用(1)(2)解答中所积累的经验和知识,完成下题:

如图3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°ABBCEAB上一点,且∠DCE45°BE4DE="10," 求直角梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).

(1)求该抛物线的函数表达式;

(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(发现问题)爱好数学的小明在做作业时碰到这样的一道题目:

如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值

(解决问题)小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.

(1)请你找出图中与OC相等的线段,并说明理由;

(2)求线段OC的最大值.

(灵活运用)

(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.

(迁移拓展)

(4)如图③,BC=4,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCO中,O00),C03),Aa0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED

1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);

2)如图2,当a3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若CGE是等腰三角形,求直线BE的解析式;

3)如图3,矩形ABCO的对称中心为点P,当PB关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在MN使得四边形EFMN为平行四边形,若存在直接写出MN坐标,不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.

(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为

(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解不等式组:

2)因式分解:(x2)(x8+8

3)解方程:+

4)解方程:(2x1236x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)的图象如图所示,下列结论:b2﹣4ax>0;②2a+b>0;③abc<0;④4a﹣2b+c<0;⑤a+b+c>0.其中正确的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,-2).

(1)求一次函数与反比例函数的解析式;

(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.

查看答案和解析>>

同步练习册答案