分析 (1)根据圆周角定理求出∠BAC=90°,根据三角形内角和定理和垂直求出∠ACB+∠ABC=90°,∠BAD+∠ABC=90°,即可得出答案;
(2)根据圆周角定理求出∠ACB=∠ABE,推出∠BAD=∠ABE,根据等腰三角形的判定得出即可.
解答 解:(1)∠ACB与∠BAD相等,
理由是:∵BC是⊙O的直径,
∴∠BAC=90°,
∴∠ACB+∠ABC=90°,
∵AD⊥BC,
∴∠BAD+∠ABC=90°,
∴∠ACB=∠BAD;
(2)△FAB是等腰三角形,
理由是:∵$\widehat{AE}$=$\widehat{AB}$,
∴∠ACB=∠ABE,
∵∠ACB=∠BAD,
∴∠BAD=∠ABE,
∴AF=BF,
∴△FAB是等腰三角形.
点评 本题考查了等腰三角形的判定,三角形内角和定理,圆周角定理,圆心角、弧、弦之间的关系等知识点的应用,能求出∠ACB=∠BAD是解此题的关键,题目比较典型,综合性比较强.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com