精英家教网 > 初中数学 > 题目详情
10.方程(x-3)(x+1)=0的较小的根是x=-1.

分析 根据方程即可得出两个一元一次方程,求出方程的解即可.

解答 解:(x-3)(x+1)=0,
x-3=0,x+1=0,
x1=3,x2=-1,
所以方程较小的根是-1,
故答案为:-1.

点评 本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.阅读理解.
若方程x2+px+q=0的根为x1=a、x2=b,则a+b=-p、ab=q,所以x2+px+q=x2-(a+b)x+ab=(x-a)(x-b),也就是说如果知道x2+px+q=0的两根就可以对x2+px+q分解因式了.例如在实数范围内分解x2-x-1
解:设x2-x-1=0解得x=$\frac{1±\sqrt{5}}{2}$则x2-x-1=(x-$\frac{1+\sqrt{5}}{2}$)(x-$\frac{1-\sqrt{5}}{2}$)
(1)在实数范围内分解二次三项式:y2-3y-2
(2)试分解2x2+x-4
(3)探索:二次三项式ax2+bx+c(a≠0、a、b、c是常数)满足什么条件时,在实数范围内可分解因式,满足什么条件时,不能在实数范围内分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知∠α=18°24′,则它的补角等于161.6度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若$\sqrt{a+b+5}$+|2a-b+1|=0,则(b-a)2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.分解因式(m+n)2-4(m+n)+4=(m+n-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知$\frac{x-b}{a}$=2-$\frac{x-a}{b}$,且a+b=2,请化简并求值以下代数式:$\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}$+$\frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.对于两个实数a、b,我们规定一种新运算“*”:a*b=2a(b-1)
(1)解方程:3*x-2*4=0
(2)当a、b满足什么条件时,关于x的方程a*x=x+a*1-b
①无解;
②有唯一解;
③有无数个解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:正方形纸片ABCD的边长为4,将该正方形纸片沿EF折叠(E,F分别在AB,CD边上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P.
(1)如图①,连接PE,若M是AD边的中点.①图中与△PMD相似的三角形是△AME∽△DPM,△MPD∽△FPN,△EMP∽△MDP;
②求△PMD的周长.
(2)如图②,随着落点M在AD边上移动(点M不与A、D重合),△PDM的周长是否发生变化?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:
探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是$\sqrt{3}$+1;如图2,当a=60°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=$\frac{R-m}{R}$(用含有R、m的代数式表示)
拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是90°<α≤120°,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)

查看答案和解析>>

同步练习册答案