精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,OC=2 ,sin∠AOC= ,反比例函数y= 的图象经过点C以及边AB的中点D.
(1)求这个反比例函数的解析式;
(2)四边形OABC的面积.

【答案】
(1)解:过C作CM⊥x轴于M,则∠CMO=90°,

∵OC=2 ,sin∠AOC= =

∴MC=4,

由勾股定理得:OM= =2,

∴C的坐标为(2,4),

代入y= 得:k=8,

所以这个反比例函数的解析式是y=


(2)解:

过B作BE⊥x轴于E,则BE=CM=4,AE=OM=2,过D作DN⊥x轴于N,

∵D为AB的中点,

∴DN= =2,AN= =1,

把y=2代入y= 得:x=4,

即ON=4,

∴OA=4﹣1=3,

∴四边形OABC的面积为OA×CM=3×4=12


【解析】(1)过C作CM⊥x轴于M,则∠CMO=90°,解直角三角形求出CM,根据勾股定理求出OM,求出C的坐标,即可求出答案;(2)根据D为中点求出DN的值,代入反比例函数解析式求出ON,求出OA,根据平行四边形的面积公式求出即可.
【考点精析】本题主要考查了比例系数k的几何意义和平行四边形的性质的相关知识点,需要掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B.则线段BC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCB=90°,AB=8 cmAD=24 cmBC=26 cm.点PA出发,以1 cm/s的速度向点D运动,点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQCD需要__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆弧形桥拱的跨度AB=16米,拱高CD=4米,那么圆弧形桥拱所在圆的半径是米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).

(1)求k的值;

(2)若点P(x,y)是该直线上的一个动点,探究:当OPA的面积为27时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:如图,点DEF分别是三角形ABC的边BCCAAB上的点,连接DEDFDEAB,∠BFD=∠CED,连接BEDF于点G,求证:∠EGF+∠AEG180°.

证明:∵DEAB(已知),

∴∠A=∠CED   

又∵∠BFD=∠CED(已知),

∴∠A=∠BFD   

DFAE   

∴∠EGF+∠AEG180°(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.

(1)请将条形统计图补充完整;

(2)这50户家庭月用水量的平均数是 ,众数是 ,中位数是

(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.

(1)证明:AB=AD+BC;

(2)判断△CDE的形状?并说明理由.

查看答案和解析>>

同步练习册答案