【题目】如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E.
(1)求证:△CDE∽△FAE;
(2)当E是AD的中点且BC=2CD时,直接写出图中所有与∠F相等的角.
【答案】(1)见解析;(2)图中所有与∠F相等的角为∠DCE、∠BCF、∠AEF、∠DCE,理由见解析
【解析】
(1)根据四边形ABCD是平行四边形就可以证明△CDE∽△FAE;
(2)根据(1)和E是AD的中点可以得到△CDE≌△FAE,然后根据全等三角形的性质和等腰三角形的性质即可得出答案.
(1)证明:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠DCE=∠F,∠CDE=∠FAE,
∴△CDE∽△FAE;
(2)解:图中所有与∠F相等的角为∠DCE、∠BCF、∠AEF、∠DCE,理由如下:
由(1)得:∠DCE=∠F,
∵△CDE∽△FAE,DE=EA,
∴△CDE≌△FAE,
∴CD=AF,
∴BF=2CD,
∵BC=2CD,AD=BC=2AE=2DE,
∴BF=BC,AF=AE,CD=DE,
∴∠F=∠BCF,∠AEF=∠F,∠DEC=∠DCE.
科目:初中数学 来源: 题型:
【题目】我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,,是的中线,,垂足为.像这样的三角形均为“中垂三角形”.设,,.
特例探索:
(1)①如图1,当,时,_________,________;
②如图2,当,时,求和的值.
归纳证明:
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
(3)利用(2)中的结论,解答下列问题:在边长为3的菱形中,为对角线,的交点,分别为线段,的中点,连接,并延长交于点,,分别交于点,,如图4所示,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(x,y).
(1)求反比例函数与一次函数的解析式及B点坐标;
(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则等于( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某礼品店从文化用品市场批发甲、乙、丙三种礼品(每种礼品都有),各礼品的数量和批发单价列表如下:
甲 | 乙 | 丙 | |
数量(个) | |||
批发单价(元) | |||
当时,若这三种礼品共批发个,甲礼品的总价不低于丙礼品的总价,求的最小值.
已知该店用元批发了这三种礼品,且.
当时,若批发这三种礼品的平均单价为元/个,求的值.
当时,若该店批发了个丙礼品,且为正整数,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】日前,某公司决定对塘栖枇杷品种进行培育,育苗基地对其中的四个品种“白砂”“红袍”“夹脚”“宝珠”共500粒种子进行发芽试验,从中选择发芽率最高的品种进行推广,通过实验得知“白砂”品种的发芽率为,并把实验数据绘成两幅统计图(部分信息未给出):
(1)求实验中“红袍”品种的种子数量;
(2)求实验中“白砂”品种的种子发芽的株数,并补全条形统计图;
(3)从以上信息,你认为应选哪一个品种进行推广,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.
(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?
(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com