【题目】如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.
(1)求证: .
(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即
,如T(60°)=1.
①理解巩固:T(90°)= ________,T(120°)=_________,若α是等腰三角形的顶角,则T(α)的取值范围是_____________________;
②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点这沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).
(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
【答案】 0<T(α)<2
【解析】试题分析:(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可;
(2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;
②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.
(1)∵AB=AC,DE=DF,∴ ,又∵∠A=∠D,∴△ABC∽△DEF,∴;
(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=90°,AB=AC,作AD⊥BC于D,则∠B=60°,∴BD=AB,∴BC=AB,∴T(120°)=;
∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为: ; ;0<T(α)<2;
②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T(80°)≈1.29,∴蚂蚁爬行的最短路径长为1.29×9≈11.6.
科目:初中数学 来源: 题型:
【题目】妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,于是妈妈取了一点儿品尝,这应该属于___________. (填“全面调查”或“抽样调査”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面内,下列命题是假命题的( )
A. 若a∥b,b∥c,则a∥cB. 若a⊥b,b∥c,则a⊥c
C. 若a⊥b,b⊥c,则a⊥cD. 若a⊥b,b⊥c,则a∥c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个;
(1)假设销售单价提高元,那么销售每个篮球所获得的利润是 元;这种篮球每月的销售量是 个;(用含的代数式表示)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com